- Для чего нужен SM-контроллер шины
- Ошибка диспетчера устройств
- Контроллер шины: назначение
- Установка драйвера
- SM контроллер шины: для чего он нужен?
- Содержание статьи
- Шина SM
- Диагностика
- Достоинства контроллера
- Контроллер шины
- Шины и протоколы в промышленной автоматике: как всё это работает
- Нижний уровень или полевая шина — то, с чего всё начинается
- Верхний уровень: от гирлянды до целой рабочей станции
- «Древние» протоколы передачи данных: Modbus и HART
- Второе поколение протоколов или не совсем промышленные шины ISA, PCI(e) и VME
- Как работают современные промышленные шины и протоколы
- Видео
Для чего нужен SM-контроллер шины
SM-контроллер шины – это вспомогательный интерфейс, задачей которого является сбор разнообразных данных. Например, характеристик блоков памяти или температуры корпуса центрального процессора. Обычно SM-контроллер шины служит для управления «интеллектуальными» блоками источников бесперебойного питания персонального компьютера. Однако чаще всего операционная система ХР самостоятельно способна справиться с подобным процессом, так что использование данного контроллера может стать формальным.
Ошибка диспетчера устройств
Часто после переустановки операционной системы персонального компьютера диспетчер устройств определяет, что SM-контроллер шины работает некорректно. Это довольно распространенная проблема. Для того чтобы все оборудование работало как следует, требуется установка драйверов для этого устройства. Неопытные пользователи ПК начинают задавать на форумах вопросы, чтобы понять, что же представляет собой SM-контролер шины. А вот найти грамотный ответ не всегда получается. Постоянные посетители форумов дают противоречивые ответы: одни утверждают, что такого оборудования нет, это ошибка системы, и можно пренебречь установкой драйверов, а их оппоненты, наоборот, настаивают на исключительной важности контроллера. На самом деле, SM-контроллер шины существует, но имеет ли он серьезное значение для полноценного функционирования персонального компьютера или нет? Попробуем разобраться.
Контроллер шины: назначение
Если говорить простым языком, то данное оборудование входит в состав системной платы любого современного ПК или ноутбука. Контроллер необходим для обеспечения работоспособности южного моста материнской платы, а также сетевого адаптера. Невзирая на то, что данная микросхема является вспомогательной, она выполняет весьма важную функцию: осуществляет сбор локальных данных, от которых зависит работоспособность системы в целом. Кроме того, SM-шина используется для обеспечения связи с другими элементами на системной плате, например для управления вентиляторами. Несмотря на то что современные операционные системы могут дублировать работу такого контроллера, важно, чтобы он также корректно выполнял свою функцию. Поэтому лучше потратить немного времени и установить для него необходимое программное обеспечение, чем впоследствии выяснять причины сбоев в работе оборудования ПК.
Установка драйвера
Найти необходимое программное обеспечение можно на оптическом диске, который в обязательном порядке входит в комплект материнской платы, или на официальном сайте производителя данной системной платы. Для установки драйвера зайдите в «Диспетчер устройств», выберите «SM-контроллер шины» и далее по подсказкам операционной системы установите необходимое программное обеспечение. Для такой процедуры понадобится всего-навсего минут 10 вашего времени. После этого перезагрузите компьютер и проверьте, корректно ли установлены драйвера, для чего снова зайдите в «Диспетчер устройств» и убедитесь в этом.
SM контроллер шины: для чего он нужен?
Содержание статьи
Шина SM
Передача информации по SM контроллеру производится по двухпроводному шлейфу. Обычно шина не имеет возможности для настройки, однако в некоторых случаях может потребоваться установка драйвера SMB (System Management Bus), который можно скачать с сайта-производителя вашего ноутбука или материнской платы. Также контролеры для процессоров Intel можно загрузить с официального сайта компании, перейдя в раздел технической поддержки.
Диагностика
При возникновении сообщения об ошибке в системе, связанной с функционированием шины, необходимо в первую очередь попробовать переустановить драйвер. Для этого скачайте программное обеспечение контроллера с соответствующего сайта и произведите его установку, запустив полученный файл и следуя инструкциям на экране. Если переустановка драйвера не помогла избавиться от возникающей ошибки, вполне вероятно, что у компьютера могут наблюдаться некоторые неполадки в работе. Так, ошибка может возникать в результате некоторых сбоев в работе чипсета материнской памяти. В данном случае у компьютера могут проявляться другие проблемы в функционировании, например, снижение производительности процессора, оперативной памяти или графической подсистемы.
Падение скорости работы может быть заметно при повседневном использовании компьютера. Иногда проблемы с шиной сопровождают нарушения в функционировании USB или звуковой карты. Для более точной диагностики проблемы может будет потребоваться обратиться в компьютерный сервис-центр.
Достоинства контроллера
Само использование шины позволяет компьютеру вести обмен информацией с остальной частью системы, т.е. все необходимые сообщения от оборудования идут напрямую к другим устройствам, что позволяет постоянно контролировать состояние компьютера в реальном времени. Более того технология позволяет значительно уменьшить количество проводов в корпусе компьютера, поскольку для создания альтернативного протокола могло бы потребоваться большее количество шлейфов, чтобы организовать отправку служебной информации по специальным управляющим линиям.
При помощи шины SM можно определить объем установленной памяти в компьютере и сконфигурировать ее параметры. Также через SM может быть извлечена информация об изготовителе оборудования, а также номере модели устройства в соответствии со спецификацией, заданной пользователем. Через протокол реализуется отправка различных сообщений об ошибках в работе устройства. Контроллер также позволяет определить состояние аккумуляторной батареи ноутбука, ее общую емкость, температуру работы, использованные циклы разряда и т.п.
Контроллер шины
Рис. 5.
Рис. 4.
Рис. 3.
Рис. 2.
Рис. 1.
Здесь представлены два микропроцессора, которые могут через магистраль обращаться к общими ЗУ и УВВ. Очевидно, для ЗУ и УВВ, представленных на рисунке, существует два ведущих устройства — микропроцессор 1 и микропроцессор 2. Естественно, микропроцессоры используют общие ресурсы не одновременно, а по очереди, поэтому в конкретном цикле обмена ведущим устройством является один из них. В общем случае количество микропроцессоров может быть больше двух.
Такая схема может применяться в разных случаях, например, если нужно осуществить обмен данными между двумя микропроцессорами через общее ЗУ, или иметь доступ из нескольких МПС к одному УВВ, через которое подключен какой-либо датчик.
Видео: Контроллер универсальной последовательной шины USBСкачать
Видео: Другие устройства в диспетчере устройств как убрать Windows 11.Неизвестное устройство.PCI-контроллерСкачать
На рис. 1 представляет упрощенное представление системы с несколькими микропроцессорами. В реальности, системы будет выглядеть следующим образом (рис. 2):
|
У каждого микропроцессора имеются свои персональные ЗУ и УВВ, находящиеся целиком и полностью в его распоряжении. Вместе с микропроцессором они образуют микропроцессорную систему. В то же время, каждый микропроцессор имеет доступ к общим ресурсам — ЗУ и УВВ.
Магистрали (шины), соединяющие все эти устройства, имеют свою классификацию (рис. 3):
|
Магистраль, выходящая из микропроцессора называется локальной шиной микропроцессора. Она является мультиплексированной (в большинстве случаев). Магистраль, соединяющая микропроцессор с УВВ и ЗУ, находящимися в его персональном распоряжении, называется резидентной шиной. Магистраль, соединяющая микропроцессор с общими ЗУ и УВВ носит название системной шины. Резидентная и системная шины не мультиплексированы.
Очевидно, для подключения УСО к микропроцессору в данном случае мы должны использовать специальную схему — схему шинного интерфейса (СШИ). Она должна располагаться в месте соединения всех трех шин (см. рис. 3). СШИ должна решать следующие задачи:
1. Демультиплексирование локальной ШАД;
2. Хранение адреса в течение всего цикла обмена;
3. Подключение микропроцессора (локальной шины) к системной или резидентной шине, в зависимости от того, по какой шине будет происходить обмен.
Отдельно должен решаться вопрос о порядке подключении к системной шине (СШ). Очевидно, что к общим ресурсам (ЗУ, УВВ) в некий момент времени может иметь доступ только один микропроцессор. Следовательно, должна существовать возможность проверки занятости СШ. Также необходимо предусмотреть механизм для разрешения конфликтных ситуаций, например, когда два или более микропроцессора одновременно попытаются получить доступ к общим ресурсам. Все эти вопросы будут рассмотрены нами позже, пока же сосредоточимся на создании СШИ, решающей сформулированные выше три задачи.
Очевидно, что СШИ должно быть две — одна будет обеспечивать подключение к СШ, другая — к РШ. Естественно, в каждом цикле обмена работать будет либо одна, либо другая СШИ (рис. 4):
|
Рассмотрим более детально саму схему шинного интерфейса (рис. 5):
|
Если посмотреть на сформулированные ранее три задачи, которые должна решать СШИ, мы можем увидеть, что две первые из них совпадают с задачами, которые решала рассмотренная в предыдущем разделе схема демультиплексирования. Следовательно, она может быть положена в основу СШИ.
Остается третья задача: обеспечение подключения/отключения от локальной шины (в соответствии с сигналом, передаваемым по специальной линии «Разрешение подключения к шине»). На выходе СШИ мы имеем три шины: адреса, данных и управления. Задача отключения шины данных фактически уже решена в схеме демультиплексирования: при неактивном сигнале DEN шина данных отключена от локальной шины. Отключение шины адреса также может быть выполнено в рамках известной нам схемы демультиплексирования путем подачи сигнала «Разрешение подключения к шине» на вход OE буферного регистра.
Для отключения шины управления используется специальное устройство, называемое контроллером шины (рис. 6).
Видео: 03. Основы устройства компьютера. Память и шина. [Универсальный программист]Скачать
Видео: Sm контроллер шины windows 7/32 bit chipset SM Bus controller and others driversСкачать
Контроллер шины предназначен для решения задач управления шинным интерфейсом.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Шины и протоколы в промышленной автоматике: как всё это работает
Наверняка многие и вас знают или даже видели, каким образом управляются большие автоматизированные объекты, например, атомная станция или завод со множеством технологических линий: основное действо часто происходит в большой комнате, с кучей экранов, лампочек и пультов. Это комплекс управления обычно называется ГЩУ — главный щит управления для контроля за производственным объектом.
Наверняка вам было интересно, как всё это работает с точки зрения аппаратной и программной части, и какие там используются протоколы передачи данных. В этой статье мы разберемся, как различные данные попадают на ГЩУ, как подаются команды на оборудование, и что вообще нужно, чтобы управлять компрессорной станцией, установкой производства пропана, линией сборки автомобиля или даже канализационно-насосной установкой.
Нижний уровень или полевая шина — то, с чего всё начинается
Этот неясный для непосвященных набор слов используется, когда нужно описать средства общения устройств управления с подведомственным оборудованием, например, модулями ввода-вывода или измерительными устройствами.
Под устройствами управления мы подразумеваем ПЛК, т.е. программируемые логические контроллеры (англ. PLC), или ПКА, т.е. программируемые контроллеры автоматизации (англ. PAC). Между ПЛК и ПКА есть некоторые различия, однако, в рамках данной статьи они не существенны, поэтому для упрощения будем использовать общий термин «контроллер».
В русскоязычном сообществе асушников канал общения между контроллером и другими устройствами обычно называют «полевой шиной», потому что он отвечают за передачу данных, которые приходят с «поля».
«Поле» — это глубокий профессиональный термин, обозначающий тот факт, что некое оборудование (например, датчики или исполнительные механизмы), с которым взаимодействует контроллер, находятся где-то далеко-далеко, на улице, в полях, под покровом ночи. И неважно, что датчик может быть расположен в полуметре от контроллера и измерять, допустим, температуру в шкафу автоматики, все равно считается, что он находится «в поле». Чаще всего сигналы с датчиков, приходящие в модули ввода-вывода все-таки преодолевают расстояния от десятков до сотен метров (а иногда и больше), собирая информацию с удаленных площадок или оборудования. Собственно, поэтому шина обмена, по которой контроллер получает значения с этих самых датчиков, называется обычно полевой шиной или реже шиной нижнего уровня или промышленной шиной.
Тут следует отметить, что в Европе и США полевым уровнем считаются только сами устройства, расположенные «в поле», но не среда передачи данных. В российских реалиях термин «полевая шина» или «шина нижнего уровня», пожалуй, слегка размыт и обозначает способ передачи данных от модулей ввода-вывода к контроллеру и наоборот.
Общая схема автоматизации промышленного объекта
Видео: ну как там с sm контроллером шины, а у тебя кста звук в OBS не захватывает)))Скачать
Видео: Код 28 — для устройства не установлены драйверы в Windows 10 и Windows 7 (решение)Скачать
Итак, электрический сигнал от датчика проходит некое расстояние по кабельным линиям (чаще по обычному медному кабелю с некоторым количеством жил), к которым подсоединяются несколько датчиков. Затем сигнал попадает в модуль обработки (модуль ввода-вывода), там он преобразуется в понятный контроллеру цифровой язык. Далее этот сигнал по полевой шине попадает непосредственно в контроллер, где и обрабатывается уже окончательно. На основе таких сигналов и строится логика работы самого контроллера. Существует и обратный путь: от контроллера команда управления по полевой шине попадает в модуль вывода, где преобразуется из цифрового вида в аналоговый и поступает по кабельным линиям к исполнительным механизмам и различным устройствам (на схеме выше не указаны).
Верхний уровень: от гирлянды до целой рабочей станции
Верхним уровнем называют все то, к чему может прикасаться обычный смертный оператор, который управляет технологическим процессом. В простейшем случае верхний уровень представляет собой набор лампочек и кнопочек. Лампочки сигнализируют оператору о неких происходящих событиях в системе, кнопочки служат для подачи команд контроллеру. Такую систему часто называют «гирлянда» или «ёлка», потому что выглядит очень похоже (как можно убедиться по фотографии в начале статьи).
Если оператору повезло больше, то в качестве верхнего уровня ему достанется панель оператора — некий плоскопанельный компьютер, который тем или иным образом получает данные для отображения от контроллера и выводит их на экран. Такая панель обычно монтируется на сам шкаф автоматики, поэтому взаимодействовать с ней приходится, как правило, стоя, что вызывает неудобства, плюс качество и размер изображения — если это малоформатная панелm — оставляет желать лучшего.
Ну и, наконец, аттракцион невиданной щедрости — рабочая станция (а то и несколько дублирующих), представляющая собой обычный персональный компьютер.
Для наглядного отображения информации на рабочих станциях и плоскопанельных компьютерах используют специализированное программное обеспечение — SCADA-системы. На человеческий язык SCADA переводится как система диспетчерского управления и сбора данных. Она включает в себя множество компонентов, таких как человеко-машинный интерфейс, визуализирующий технологические процессы, систему управления этими процессами, систему архивирования параметров и ведение журнала событий, систему управления тревогами и т.д. Всё это дает оператору полноценную картину происходящих на производстве процессов, а также возможность ими управлять и оперативно реагировать на отклонения от технологического процесса.
Оборудование верхнего уровня обязано взаимодействовать неким образом с контроллером (иначе зачем оно нужно?). Для такого взаимодействия используются протоколы верхнего уровня и некая технология передачи, например, Ethernet или UART. В случае с «ёлкой» таких изощрений, конечно, не нужно, лампочки зажигаются с использованием обычных физических линий, никаких мудреных интерфейсов и протоколов там нет.
В общем-то, этот верхний уровень менее интересен, нежели полевая шина, поскольку этого верхнего уровня может вообще не быть (из серии нечего там смотреть оператору, контроллер сам разберется, что и как нужно делать).
«Древние» протоколы передачи данных: Modbus и HART
Мало кто знает, но на седьмой день создания мира Бог не отдыхал, а создавал Modbus. Наравне с HART-протоколом, Modbus, пожалуй, самый старый промышленный протокол передачи данных, он появился аж в 1979 году.
В качестве среды для передачи изначально использовался последовательный интерфейс, затем Modbus реализовали поверх TCP/IP. Это синхронный протокол по схеме «мастер-слейв» (главный-подчиненный), в котором используется принцип «запрос-ответ». Протокол довольно тяжеловесный и медленный, скорость обмена зависит от характеристик приемника и передатчика, но обычно счет идет чуть ли не на сотни миллисекунд, особенно в реализации через последовательный интерфейс.
Более того, регистр передачи данных Modbus является 16-битным, что сразу же накладывает ограничения на передачу типов real и double. Они передаются либо по частям, либо с потерей точности. Хотя Modbus до сих пор повсеместно используется в случаях, когда не нужна высокая скорость обмена и потеря передаваемых данных не критична. Многие производители различных устройств любят расширять протокол Modbus своим исключительным и очень оригинальным образом, добавляя нестандартные функции. Поэтому данный протокол имеет множество мутаций и отклонений от нормы, но все же до сих пор успешно живет в современном мире.
Протокол HART тоже существует с восьмидесятых годов, это промышленный протокол обмена поверх двухпроводной линии токовой петли, в которую напрямую включаются датчики 4-20 мА и другие приборы с поддержкой протокола HART.
Видео: 🖥️ Периферийное устройство Bluetooth драйвер WindowsСкачать
Видео: Шина компьютера, оперативная память, процессор и мостыСкачать
Для коммутации линий HART используются специальные устройства, так называемые HART-модемы. Также существуют преобразователи, которые на выходе предоставляют пользователю уже, допустим, протокол Modbus.
Примечателен HART, пожалуй, тем, что помимо аналоговых сигналов датчиков 4-20 мА в цепи передается и цифровой сигнал самого протокола, это позволяет соединить цифровую и аналоговую часть в одной кабельной линии. Современные HART-модемы могут подключаться в USB-порт контроллера, соединяться по Bluetooth, либо же старинным способом через последовательный порт. Десяток лет назад по аналогии с Wi-Fi появился и беспроводной стандарт WirelessHART, работающий в диапазоне ISM.
Второе поколение протоколов или не совсем промышленные шины ISA, PCI(e) и VME
На смену протоколам Modbus и HART пришли не совсем промышленные шины, такие как ISA (MicroPC, PC/104) или PCI/PCIe (CompactPCI, CompactPCI Serial, StacPC), а также VME.
Настала эра вычислителей, имеющих в своем распоряжении универсальную шину передачи данных, куда можно подключать различные платы (модули) для обработки некоего унифицированного сигнала. Как правило, в этом случае процессорный модуль (вычислитель) вставляется в так называемый каркас, который обеспечивает взаимодействие по шине с другими устройствами. Каркас, или, как его любят называть трушные автоматизаторы, «крейт», дополняется необходимыми платами ввода-вывода: аналоговыми, дискретными, интерфейсными и т.д., либо все это слепливается в виде бутерброда без каркаса — одна плата над другой. После чего это многообразие на шине (ISA, PCI, etc.) обменивается данными с процессорным модулем, который таким образом получает информацию с датчиков и реализовывает некую логику.
Контроллер и модули ввода-вывода в каркасе PXI на шине PCI. Источник: National Instruments Corporation
Все бы ничего с этими шинами ISA, PCI(e) и VME, особенно для тех времен: и скорость обмена не огорчает, и расположены компоненты системы в едином каркасе, компактно и удобно, горячей замены плат ввода-вывода может и не быть, но пока еще и не очень хочется.
Но есть ложка дегтя, и не одна. Распределенную систему довольно сложно построить в такой конфигурации, шина обмена локальная, нужно что-то придумывать для обмена данными с другими подчиненными или равноправными узлами, тот же Modbus поверх TCP/IP или какой другой протокол, в общем, удобств маловато. Ну и вторая не очень приятная штука: платы ввода-вывода обычно ждут на вход какой-то унифицированный сигнал, и гальванической развязки с полевым оборудованием у них нет, поэтому нужно городить огород из различных модулей преобразования и промежуточной схемотехники, что сильно усложняет элементную базу.
Промежуточные модули преобразования сигнала с гальванической развязкой. Источник: DataForth Corporation
«А что с протоколом обмена по промышленной шине?» — спросите вы. А ничего. Нет его в такой реализации. По кабельным линиям сигнал попадает с датчиков на преобразователи сигналов, преобразователи выдают напряжение на дискретную или аналоговую плату ввода-вывода, а данные с платы уже читаются через порты ввода/вывода, средствами ОС. И никаких специализированных протоколов.
Как работают современные промышленные шины и протоколы
А что теперь? К сегодняшнему дню классическая идеология построения автоматизированных систем немного поменялась. Роль сыграли множество факторов, начиная с того, что автоматизировать тоже должно быть удобно, и заканчивая тенденцией на распределенные автоматизированные системы с удаленными друг от друга узлами.
Пожалуй, можно сказать, что основных концепций построения систем автоматизации на сегодняшний день две: локализованные и распределенные автоматизированные системы.
В случае с локализованными системами, где сбор данных и управление централизовано в одном конкретном месте, востребована концепция некоего набора модулей ввода-вывода, соединенных между собой общей быстрой шиной, включая контроллер со своим протоколом обмена. При этом, как правило, модули ввода-вывода включают в себя и преобразователь сигнала и гальваническую развязку (хотя, разумеется, не всегда). То есть конечному потребителю достаточно понять, какие типы датчиков и механизмов будут присутствовать в автоматизированной системе, сосчитать количество требуемых модулей ввода-вывода для разных типов сигналов и соединить их в одну общую линейку с контроллером. В этом случае, как правило, каждый производитель использует свой любимый протокол обмена между модулями ввода-вывода и контроллером, и вариантов тут может быть масса.
В случае распределенных систем справедливо все, что сказано в отношении локализованных систем, кроме этого, важно, чтобы отдельные компоненты, например, набор модулей ввода-вывода плюс устройство сбора и передачи информации — не очень умный контроллер, который стоит где-нибудь в будке в поле, рядом с краном, который перекрывает нефть, — могли взаимодействовать с такими же узлами и с главным контроллером на большом расстоянии с эффективной скоростью обмена.
Как разработчики выбирают протокол для своего проекта? Все современные протоколы обмена обеспечивают довольно высокое быстродействие, поэтому зачастую выбор того или иного производителя обусловлен не скоростью обмена по этой самой промышленной шине. Не так важна и реализация самого протокола, потому что, с точки зрения разработчика системы, это все равно будет черный ящик, который обеспечивает некую внутреннюю структуру обмена и не рассчитан на вмешательство извне. Чаще всего обращают внимание на практические характеристики: производительность вычислителя, удобство применения концепции производителя к поставленной задаче, наличие нужных типов модулей ввода-вывода, возможность горячей замены модулей без разрыва шины и т.д.
Популярные поставщики оборудования предлагают собственные реализации промышленных протоколов: например, всем известная компания Siemens разрабатывает свою серию протоколов Profinet и Profibus, компании B&R — протокол Powerlink, Rockwell Automation — протокол EtherNet/IP. Отечественное решение в этом списке примеров: версия протокола FBUS от российской компании Fastwel.
Есть и более универсальные решения, которые не привязаны к конкретному производителю, такие как EtherCAT и CAN. Мы подробно разберем эти протоколы в продолжении статьи и разберемся, какие из них лучше подходят для конкретных применений: автомобильной и аэрокосмической промышленности, производства электроники, систем позиционирования и робототехники. Оставайтесь на связи!