- Защита редуктора и двигателя с помощью предохранительной муфты
- Виды предохранительных муфт, решающих задачу:
- Монтаж фрикционной муфты на быстроходный вал
- Монтаж фрикционных и шариковых предохранительных муфт на тихоходный вал
- Передача вращения между параллельно расположеными валами
- Монтаж фрикицонных муфт на тихоходный вал (выходной) редуктора
- Муфта для соединения валов
- Как соединить валы механизмов?
- Самодельная соединительная муфта
- Классификация муфт
- Жесткое соединение валов
- Полужесткое соединение валов
- Эластичное соединение валов
- Монтаж фрикционной муфты на быстроходный вал
- Монтаж фрикционных и шариковых предохранительных муфт на тихоходный вал
- Монтаж фрикцонных муфт на тихоходный вал выходного редуктора
- Как соединить электродвигатель с редуктором
- Как соединяются валы редуктора и рабочего механизма.
- Общие положения при соединении редукторов.
- Максимальные моменты затяжки винтовых соединений.
- Соединение редуктора с муфтой.
- Установка шкивов ремённой передачи на валы редуктора.
- Видео
Защита редуктора и двигателя с помощью предохранительной муфты
Для того, чтобы избежать таких последствий и сохранить редуктор и электромотор от поломок компания НПП «Сервоомеханизмы» предлагает использовать предохранитульные муфты.
Виды предохранительных муфт, решающих задачу:
1) фрикционные, установленные на быстроходном валу редуктора;
2) фрикционные, установленные на тихоходном валу редутора;
3) шариковые или роликовые, установленные на быстроходном валу;
4) шариковые или роликовые, установленные на быстроходном валу.
Монтаж фрикционной муфты на быстроходный вал
Монтаж фрикционных и шариковых предохранительных муфт на тихоходный вал
Передача вращения между параллельно расположеными валами
Монтаж фрикицонных муфт на тихоходный вал (выходной) редуктора
Передача вращения между соосными валами
Шариковые муфты, монтаж на быстроходный вал редутора.
Шариковые муфты для монтажа на входном валу редуктора являются законченным техническим решением, включающим: муфту, блок-фланец, датчик срабатывания
Фрикционные муфты
Шариковые муфты
Готовы предоставить исчерпывающую информацию:
— чертежи с характеристиками для выбранной модели
— руководство по эксплуатации и монтажу
Для предварительного подбора муфты просим сообщить информацию:
— мощность и обороты электродвигателя
— тип и передаточное число редуктора
-схему применения и режим работы
Просмотров: 8939 | Дата публикации: Понедельник, 24 февраля 2014 08:13 |
Муфта для соединения валов
Для соединения отдельных элементов устройства применяются специальные механизмы. В последнее время распространены именно соединительные муфты. Они могут обладать самыми различными свойствами, классификация проводится по области применения и другим критериям. Неправильный выбор муфты приводит к повышенному износу конструкции.
Как соединить валы механизмов?
Для передачи осевого вращения применяются валы, на котором могут крепится различные шестерни и звездочки. Соединение проводится при применении различных методов, к примеру, используются муфты для соединения валов. К их особенностям относятся нижеприведенные моменты:
Сегодня детали соединяются между собой при применении технологи сварки крайне редко. Это связано с тем, что вибрация и другое воздействие может стать причиной появления трещин и других дефектов.
Неправильная фиксация может привести к поломке устройства. Изделие выбирается в зависимости от эксплуатационных условий. К примеру, валы могут смещаться в самых различных направлениях.
Самодельная соединительная муфта
Для существенного снижения затрат рассматривается возможность использования самодельной конструкции. Среди особенностей выделим следующие моменты:
Приведенная выше информация указывает на то, что подобное изделие может быть изготовлена при применении подручных материалов. При этом полученное устройство устанавливается для передачи высокого крутящего момента.
Классификация муфт
Выделяют много различных подобных изделий, при помощи которых проводится передача вращения. Классификация по предназначению выглядит следующим образом:
Приводные модели устанавливаются в самых различных конструкциях. Ни требуются для непосредственной передачи усилия.
Изделия соединительные для валов применяются для постоянной передачи вращения. Делятся они на несколько основных групп:
Самым простым вариантом исполнения можно назвать глухие муфты. При изготовлении втулок и других элементов могут применяться самые различные материалы, большая часть которых характеризуется высокой степенью защиты от воздействия окружающей среды.
Довольно большое распространение получили конусные переходные муфты, так как они просты в изготовлении и могут прослужить в течение длительного периода. Могут устанавливаться и шлицевые варианты исполнения, которые могут передавать большое усилие в случае эксплуатации.
Классификация гибких вариантов исполнения также проводится по большому количеству различных признаков. Большое распространение получили следующие:
Выбор наиболее подходящего соединительного элемента проводится по диаметральным размерам. Полумуфты компенсируют смещение оси, однако для повышения показателя КПД проводится добавление масла. В большинстве случаев при изготовлении применяется сталь, которая характеризуется повышенной устойчивостью к износу. При необходимости защиты механизма от воздействия электричества применяются специальные материалы, обладающие определенными свойствами.
Не стоит забывать о том, что крестовые изделия характеризуются существенным недостатком – увеличение мертвого хода из-за сильного износа выступов.
В некоторых случаях применяется поводковый вариант исполнения, который также характеризуется определенными достоинствами и недостатками.
Жесткое соединение валов
Применяется довольно большое количество различных способов соединения валов, все они характеризуются определенными качествами. Жесткий метод подключения используется тогда, когда соединение проводится с учетом отсутствия вероятности смещения узлов относительно друг друга на момент эксплуатации. Классический способ соединения характеризуется следующими особенностями:
Поперечно-свернутый вариант исполнения применяется для соединения различных деталей, которые устанавливаются в электрических машинах и других различных агрегатах. Подобная конструкция состоит з следующих элементов:
Более сложным вариантом исполнения можно назвать зубчатую муфту, которая также состоит из двух отдельных частей. Внешняя поверхность представлена зубьями, которые входят в зацепление для обеспечения надежного соединения. Осевое смещение исключается за счет применения болтов.
Полужесткое соединение валов
Определенными особенностями характеризуется полужесткий тип соединения. Примером можно назвать случай соединения вала турбогенератора с паровой турбиной. В большинстве случаев на вал электродвигателя надевается полужесткая зубчато-пружинная муфта.
Рассматриваемый вариант исполнения соединительного элемента характеризуется следующими особенностями:
Для обеспечения требуемого уровня защиты используется кожух, который изготавливается из самых различных материалов, устойчивых к воздействию окружающей среды. Несущественное изменение положения двух соединяемых элементов компенсируется за счет специального элемента.
Эластичное соединение валов
На момент эксплуатации устройства есть вероятность смещения двух элементов относительно друг друга. Решить подобную проблему можно за счет применения специальных элементов. Эластичные устройства могут устанавливаться в самых различных случаях, они характеризуются следующими особенностями:
Классическое устройство представлено двумя полумуфтами, которые соединяются за счет специальных пальцев-болтов.
На поверхность надеваются специальные кожаные шайбы и манжеты, фиксация которых проводится за счет резиновых манжет.
Монтаж фрикционной муфты на быстроходный вал
При необходимости провести монтаж фрикционной муфты можно самостоятельно при наличии небольшого комплекта инструмента. Для получения качественного результата нужно соблюдать распространенные рекомендации:
На момент установки не рекомендуется применять кустарный метод фиксации, так как это может стать причиной повреждения конструкции. Примером можно назвать изменение формы и появление вмятин, трещин, снижение прочности и многие другие моменты.
Монтаж фрикционных и шариковых предохранительных муфт на тихоходный вал
Предохранительные устройства позволяют исключить вероятность повреждения основных элементов в случае перегрузки. В этом случае процесс монтажа практически ничем не отличается:
В продаже встречаются специальные инструменты, которые существенно упрощают работу по монтажу.
Монтаж фрикцонных муфт на тихоходный вал выходного редуктора
Часто установка изделия проводится на редуктор для его соединения с электрическим двигателем. Это можно связать с тем, что редуктор может заклинивать, это приводит к перегреву двигателя. Фрикционная муфта исключает вероятность возникновения подобной проблемы. Среди особенностей монтажа отметим:
Самостоятельный монтаж должен проводиться исключительно с учетом рекомендаций, так как даже несущественный дефект становится причиной уменьшения эксплуатационного срока.
В продаже встречается просто огромное количество различных деталей, за счет чего не возникает существенных проблем при выборе. Основными критериями можно назвать тип применяемого материала при изготовлении, а также диаметральный размер. При выборе уделяется внимание тому, каким образом может проходить смещение соединяемых элементов.
Как соединить электродвигатель с редуктором
Вопросы стыковки и согласования узлов привода всегда были актуальны и трудоемки. Особенно актуальны, они стали сейчас, когда привод собирается, в основном, из покупных узлов. Рассмотрим вопрос стыковки на примере соединения электродвигателя с редуктором (рис. 2.25).
Рис. 2.25. Схема стыковки электродвигателя с редуктором:
1 – вал электродвигателя; 2, 5 – опоры; 3, 6 – корпус; 4 – вал редуктора
Вал 1 электродвигателя имеет опоры 2, расположенные в корпусе 3. Входной вал 4 редуктора имеет опоры 5, расположенные в корпусе 6. Если опоры 2 и 5 существенно несоосны, то жесткое соединение валов приведет к большим реакциям в опорах и подшипники либо быстро износятся, либо их заклинит. Обеспечить высокую соосность опор, расположенных в разных корпусах, сложно. Всегда есть радиальное смещение осей опор е и угловое смещение α. Поэтому валы соединяют не жестко, а с помощью различных подвижных муфт, «развязывающих» валы (и это главное назначение муфт, а не только передача вращения с одного вала на другой). Типовая компоновка привода с двигателем и редуктором на лапах изображена на рис. 2.26.
Рис. 2.26. Компоновка привода с двигателем и редуктором на лапах:
1 – электродвигатель на лапах; 2 – тормоз внешний; 3 – муфта; 4 – редуктор;
5 – подставка для совмещения осей; 6 – рама
Такая компоновка имеет ряд недостатков:
· при больших скоростях вращения муфты работают нормально, без вибраций, только при небольших несоосностях соединяемых валов; обеспечить малую несоосность сложно;
· конструкция привода в целом получается громоздкой и неудобной для встраивания в машину.
Поэтому, современные приводы стараются строить по-другому, например, как показано на рис. 2.27.
Рис. 2.27. Мотор-редуктор (в различных положениях):
1 – двигатель; 2 – фланец; 3 – редуктор; 4 – адаптер; 5 – гнездо; 6 – тормоз;
7 – датчик; 8 – выходной вал редуктора; 9 – закладной вал; 10 – лапа
Здесь двигатель 1 имеет фланцевое исполнение и закреплен за фланец 2 на редукторе 3 непосредственно или через переходник (адаптер) 4. Компенсирующую муфту в этом случае можно исключить.
При наличии центрирующих элементов на стыкуемых деталях и высокой точности изготовления этих деталей можно обеспечить необходимую соосность соединяемых валов. Вал двигателя в этом случае соединяется с валом редуктора жестко, например, вал двигателя вставляется в гнездо 5 входного вала редуктора. Если в приводе необходим тормоз 6 и (или) датчик 7 угла поворота и скорости вала двигателя, их встраивают внутрь двигателя. Подобную компактную конструкцию называют мотор–редуктор.
Выходной вал редуктора 8 часто выполняют полым. Тогда в этом валу можно закрепить закладной вал 9, хвостовик которого может быть любым, по желанию конструктора. Лапы 10 на редукторе выполняют по периметру корпуса, что позволяет закреплять мотор-редуктор в разных положениях. Все это существенно упрощает встраивание привода в машину.
В маломощных мотор-редукторах все функциональные элементы часто располагаются в едином корпусе (рис. 2.28).
Рис. 2.28. Мотор-редуктор в едином корпусе:
1 – корпус; 2 – датчик угла поворота или датчик скорости; 3 – электродвигатель; 4 – дисковый электромагнитный тормоз; 5 – планетарный редуктор
И только мощные тяжелые приводы по-прежнему в основном компонуют по схеме, приведенной на рис. 2.26.
Выбор электродвигателя
При выборе электродвигателя ориентируются, прежде всего, на требования к приводу, в котором двигатель будет работать. Учитывают свойства и характеристики двигателя, исходящие из его принципа действия и устройства, учитывают ограничения по применению двигателя. Ориентируясь только на характеристики двигателя, записанные в его паспорте, и не понимая устройства двигателя, при выборе двигателя легко ошибиться, так как ни в одном паспорте невозможно описать все возможные случаи и все нюансы применения двигателя. В паспорте учитывают только типовые, часто встречающиеся случаи, и набор характеристик, записанных в паспорте, весьма ограничен.
При выборе двигателя, прежде всего, необходимо определиться с его типом, например, двигатель постоянного или переменного тока. Здесь выбор изначально зависит от имеющегося источника питания. Источником постоянного тока может быть аккумулятор, батарея, неуправляемый выпрямитель на диодах (одно- или двухполупериодный), простой или сложный управляемый выпрямитель на тиристорах (управляемых диодах) или на транзисторах. Источником переменного тока может быть одно- и трехфазная сеть или частотный преобразователь. Современные приводы стараются строить на двигателях переменного тока, как более простых, надежных, дешевых, за исключением, малогабаритных высокоскоростных двигателей (микродвигателей).
Конечно, если определяющим при выборе двигателя является источник питания, двигатель должен быть согласован с ним по электрическим параметрам: роду тока, величине тока, величине напряжения.
Далее выбирают двигатели по скорости.
Имеют в виду, что высокоскоростные двигатели, при одинаковых габаритах с низкоскоростными, имеют большую мощность, но требуют редуктор с большим передаточным числом. При больших скоростях имеет место повышенный шум, а некоторые типоразмеры редукторов вообще не допускают больших скоростей на входном валу. Исходя из сказанного, например, наибольшее применение среди асинхронных двигателей имеют двигатели с n = 1500 об/мин.
Далее следует выбрать двигатель по мощности и моменту. Известно, что основной причиной выхода двигателей из строя является их перегрев. Нагрев двигателя зависит от режима работы и качества охлаждения. Режим работы может быть легким – с редкими пусками и длительными паузами, во время которых двигатель полностью охлаждается, и тяжелым – с частыми или длительными (тяжелыми) пусками при больших пусковых токах. Режимы работы нерегулируемых по скорости двигателей обозначаются по ГОСТ как S1, S2…S10. Рассмотрим два характерных режима: S1 и S4.
Режим S1 работы двигателя соответствует включению и длительной работе при постоянной нагрузке.
Мощность двигателя при поступательном движении исполнительного звена равна
, (2.14)
где F – сила сопротивления движению исполнительного звена;
V – линейная скорость движения исполнительного звена;
Мощность двигателя при вращательном движении исполнительного звена равна
, (2.15)
где ω – угловая скорость движения исполнительного звена;
M – момент сопротивления движению исполнительного звена.
По каталогу выбирают двигатель ближайший по мощности, для которого выполняется условие
Режим S4 работы двигателя соответствует затяжным пускам и (или) высокой частоте включений. S4 – повторно-кратковременный (старт-стопный) режим – последовательность одинаковых циклов, состоящих из периодов работы с постоянной нагрузкой и пауз
(рис. 2.29).
Рис. 2.29. Диаграмма работы двигателя в режиме S4
Максимальная (при ωдв = ωmax) мощность двигателя в режиме S4
где Pст – статическая (не зависящая от ускорения при разгоне) мощность на исполнительном звене механизма;
Pдин – максимальная динамическая мощность – мощность, необходимая для преодоления сил инерции при разгоне системы двигатель–механизм.
Выражения для статической и динамической мощности имеют вид
или
, (2.16)
где m и J – масса или момент инерции исполнительного звена;
a и ε – линейное или угловое ускорение исполнительного звена;
kп – коэффициент, учитывающий влияние пускового момента и инерции ротора двигателя, kп = 0,6. 0,9; при быстром разгоне системы принимают большие значения kп.
Желаемым ускорением исполнительного звена надо задаться или, зная установившуюся скорость исполнительного звена, задаться временем разгона привода tраз, тогда при равноускоренном разгоне
По найденной мощности и скорости n выбирают по каталогу двигатель, у которого мощность Pдин ³ Pдв. Этот выбор предварительный, так как приблизительно был выбран коэффициент kп, а также не учтен главный для режима S4 фактор – тепловое состояние двигателя.
С учетом пускового момента двигателя Mдвп и момента инерции ротора двигателя Jдв (Mдвп и Jдв берутся из каталога) фактическое время разгона привода
(2.19)
где Jпр – приведенный момент инерции устройства двигатель–механизм, Jпр = Jпрм + Jдв; Jпрм – приведенный к валу двигателя момент инерции механизма, включая исполнительное звено (правило приведения – по формуле 2.4);
wдв – номинальная скорость двигателя, wдв » 0,1×nдв (nдв в с размерностью об/мин находится по каталогу).
Если полученное время разгона слишком велико, надо выбрать двигатель большей мощности и расчет повторить; если слишком мало – выбрать двигатель меньшей мощности.
Тепловое состояние двигателя приблизительно характеризует относительная продолжительность включения. Рассмотрим график теплового состояния (рис. 2.30) для цикла работа–пауза.
tраз |
t (с, мин) |
работа |
пауза |
tп |
tр |
T |
T – цикл |
tп |
tр |
температура нагрева двигателя |
максимально допустимая температура |
q (°C) |
Рис. 2.30. График теплового состояния двигателя
Относительная продолжительность включения, %
где tp – время работы двигателя;
tп – время паузы – перерыва в работе; Т – время цикла.
Если продолжительность цикла менее 1. 2 минут (частые пуски), а ПВ выше 40…50 %, необходимо предусматривать запас по мощности, вплоть до двукратного, при непрерывных пусках и торможениях.
Уточненныйтепловой расчет сводится к определению допустимого числа включений выбранного двигателя в единицу времени и сравнению этого числа с фактическим числом включений. Расчет ведется с помощью коэффициентов, значения которых приводятся в каталогах. Точный тепловой расчет практически невозможен из-за сложности определения теплового баланса нагрев-охлаждение.
Двигатели, работающие при переменной нагрузке и с переменными скоростями, например в режиме сервопривода, выбираются не по мощности, а по моменту. Связано это с тем, что в сервоприводе требуется обеспечить нормированные ускорения и скорости при сложном цикле работы. Сначала выясняется закон движения исполнительного звена и строится диаграмма моментов, нагружающих двигатель (рис. 2.31).
M1 |
T |
– |
+ |
t, c |
t8 |
t7 |
t6 |
t5 |
t4 |
t3 |
t2 |
t1 |
M8=0 |
M7 |
M6 |
M4=0 |
M5 |
M3 |
M2 |
M1 |
Рис. 2.31. Диаграмма моментов, нагружающих двигатель
На диаграмме использованы следующие обозначения:
М1 – момент при разгоне, время действия момента – t1.
M2– момент при установившемся движении.
М3 – момент при торможении.
М4 = 0 – пауза в работе привода.
М5 – момент при разгоне при движении в обратном направлении.
М6 – момент при установившемся движении.
М7 – момент при торможении.
Устанавливаемый двигатель должен отвечать следующим условиям:
Первое условие связано с перегрузочными возможностями двигателя. Обычно пиковый момент имеет место на участке разгона; на рис. 2.31 Мmах = М1. Второе условие определяет работоспособность двигателя по тепловым нагрузкам.
По первому условию, в соответствии с рис. 2.30
По второму условию
. (2.22)
Наконец, при выборе двигателя нужно еще учесть условия внешней среды: температуру, влажность, запыленность и т. п. Существуют двигатели пылезащищенные, брызгозащищенные, взрывобезопасные и др.
Типы защиты от внешней среды обозначают буквами IР (International Protection) и двумя цифрами; первая характеризует защиту от посторонних предметов, вторая – защиту от попадания воды, например, IР54. Обозначения могут изменяться от IР00 (нет защиты) до IР68 (6 – защита от попадания любых предметов и любой пыли, 8 –защита при длительном погружении в воду).
Как соединяются валы редуктора и рабочего механизма.
Общие положения при соединении редукторов.
Перед проведением работ по соединению валов редуктора и механизма, проверьте, чтобы вокруг редуктора было обеспечено свободное место для безопасного доступа к рабочим узлам. Монтаж редуктора с механизмом или электродвигателем производится путём его фиксирования на фундаменте или единой раме за счёт затяжки крепёжных болтов через лапы редуктора. Вращающиеся детали редуктора в целях обеспечения безопасности должны иметь защитный кожух.
Максимальные моменты затяжки винтовых соединений.
Крутящий момент (н.м) для резьбового соединения деталей из различных металлов
Внимание: ПРИМЕНЕНИЕ УДАРНОГО ИНСТРУМЕНТА ПРИ НАСАДКЕ ШКИВОВ, МУФТ И ПРОЧЕГО ЗАПРЕЩЕНО!
Для присоединения рабочего вала редуктора с механизмом используются гибкие и жёсткие муфты, шестерни, ремённые передачи или непосредственная насадка редуктора на рабочий вал механизма. Последний вариант применяется в редукторах Ч-80, РЦД 400 и Ц2У 250.
При установке полумуфты, шкива или зубчатого колеса, необходимо обеспечить жёсткий упор с противоположенной стороны вала редуктора для предотвращения поломки подшипников и редуктора в целом. Устанавливаемые детали необходимо предварительно прогреть до температуры +80С.
Соединение редуктора с муфтой.
Валы редуктора и присоединяемого механизма должны быть отрегулированы на параллельность и отсутствие смещения по оси. Измерение параллельности осуществляется по схеме, приведённой на рисунке 1 с установкой индикатора в четырёх точках муфты под углом 90 градусов с одновременным прокручиванием обеих полумуфт. Для измерения осевого смещения применяют схему на рисунке 2, Возможно применение комбинированного метода, приведённого на рисунке 3. При расчётном диаметре муфты 200 мм, эти показатели не должны быть не более 0,05 мм. Зазор Е между полумуфтами должен быть не менее 3 мм, что обеспечивает нормальную работу при тепловом расширении валов.
Установка шкивов ремённой передачи на валы редуктора.
При использовании в приводе ремённой передачи, требуется точная взаимная параллельность валов редуктора и механизма или электродвигателя. Усилие натяжения ремней обеспечивается в соответствии с каталогом или руководством по эксплуатации оборудования.
Компенсирующие муфты бывают жесткие и гибкие (упругие, эластиные), смягчающие удары.
Некоторые производители редукторов конструируют собственные полумуфты и делают один конец вала уже с полумуфтой, другая половина полумуфты со зведочкой входит в комплект.
Насадное исполнение мотор-редуктора широко распространено и позволяет уменьшить осевые габаритные размеры. Осевую фиксацию обеспечивает гайка.
Рисунок 19- Способы соединения вала двигателя и вала редуктора.
Видео
Изготовление муфты. соеденяем мотор с редукторомСкачать
Муфта соединения редуктора с блоком усиления.Скачать
ЭЛАСТИЧНАЯ МУФТА ДЛЯ ГИДРОНАСОСА СВОИМИ РУКАМИ/ КАК СДЕЛАТЬ ЭЛАСТИЧНУЮ МУФТУ СВОИМИ РУКАМИСкачать
Муфта на электродвигатель.The clutch on the motor.Скачать
эластичная муфта для гранулятора своими рукамиСкачать
#2 Как сделать КУЛАЧКОВУЮ МУФТУ \ cam clutchСкачать