Какие типы двигателей применяют в строительных машинах + видео обзор

3.3. Электрические двигатели

В приводах строительных машин применяют электродвигатели переменного и постоянного тока.

Какие типы двигателей применяют в строительных машинах

Рис. 3.6. Типовые графики внешней на­грузки, приведенные к валу двигателя: а — при спокойной внешней нагрузке; б — при значительном повышении внешней на­грузки

Асинхронные электродвигатели переменного тока, короткозам- кнутые и с фазным ротором, называют также двигателями с кон­тактными кольцами. Они обычно питаются от электросети напря­жением 220 и 380 В с нормальной частотой 50 Гц. Эти двигатели конструктивно просты, дешевы, надежны и удобны в эксплуата­ции. Их недостатком является высокая чувствительность к колеба­ниям напряжения в питающей сети. Типовая механическая харак­теристика 3 асинхронного электродвигателя показана на рис. 3.7, где через Г и л, как и прежде, обозначены соответственно враща­ющий момент и частота вращения вала двигателя. Считается, что Двигатель работает на естественной механической характеристи­ке, если он включен в сеть с напряжением и частотой, соответ­

ствующими указанным в его паспорте, а также если в его электрическую схему не вклю­чены дополнительные сопро­тивления. В противном случае получаем искусственную меха­ническую характеристику. Рабо­чим является участок механи­ческой характеристики между точками с координатами (Т= 0; я = я0) и (Т= Тк\ п = ик). Мо­мент Т = Т„ и частота враще­ния п = пн на этом участке яв­ляются номинальными, соот­ветствующими наибольшему ресурсу двигателя. Перегрузоч­ная способность асинхронных двигателей общего назначения определяется отношением максимального момента Тк к номи­нальному ТИ на естественной характеристике: кпер= ТК/Т„ состав­ляет 1,7. 2,0 (для короткозамкнутых двигателей до 2,4), а для дви­гателей кранового типа — 2,3. 3,0. Частота вращения вала двигате­ля я на рабочем участке механической характеристики изменяется незначительно, в связи с чем естественную механическую характе­ристику асинхронного двигателя можно считать жесткой.

Момент Тп при я = 0 называют пусковым. Его отношение к но­минальному моменту Т„ для короткозамкнутых двигателей обще­го назначения составляет 1,0. 1,9, а для двигателей кранового типа 2,3. 3,0. Для двигателей с фазным ротором это отношение составляет 0,5. 1,5, тогда как пусковой ток превышает номиналь­ный в 5 —7 раз. Для уменьшения пускового тока этих двигателей в цепь обмотки ротора с помощью реостата включают дополнитель­ные сопротивления. Каждому сопротивлению в цепи ротора соот­ветствует своя искусственная механическая характеристика, на­зываемая также реостатной.

Рис. 3.7. Естественная (3) и пусковые (реостатные) (/ и 2)характеристи­ки асинхронного электродвигателя

Так, например, при включении в цепь ротора двух пусковых сопротивлений, которым соответствуют искусственные характе­ристики 7 и 2, момент при пуске будет изменяться от Т< до Т2, которые называют моментами отсечки. После включения двигателя он будет работать на характеристике 1. При этом момент будет умень­шаться от ТА (не обязательно совпадающего с Т2) до Ти а частота вращения вала увеличиваться от нуля до яв. При достижении по­следнего сопротивление, соответствующее характеристике 1, авто­матически отключается, вследствие чего момент увеличивается до значения Т=Т2 с переходом на реостатную характеристику 2. При этом двигатель разгоняется до частоты пс с одновременным

уменьшением момента до Т= Ти а после отключения второго со­противления переходит на естественную характеристику 3 в точ­ке С’ с координатами (Г2; пс). Пуск заканчивается по достиже­нии точки на естественной характеристике с моментом, равным моменту внешних сопротивлений TD. Маршрут пуска показан на рис. 3.7 стрелками. Обязательным условием пуска является усло­вие Т\ > TD. В противном случае уже на первом этапе (участок АВ) частота п = лв не будет достигнута, а, следовательно, первое со­противление не будет отключено, и дальнейшая работа возможна только на искусственной характеристике 2. При необходимости указанное условие обеспечивается снижением момента TD, в част­ности, путем отключения трансмиссии или исполнительного ме­ханизма от двигателя.

Искусственные характеристики, обладающие меньшими жест- костями по сравнению с естественной характеристикой, могут быть также использованы в качестве рабочих характеристик, ког­да необходимо плавно изменять скорости рабочих движений. Ко- роткозамкнутые двигатели запускаются и работают только на ес­тественной характеристике.

В приводах грузоподъемных машин для плавной посадки гру­зов, например, на монтаже конструкций, а также для ускоренно­го опускания грузозахватных устройств, применяют двухскорост- ные асинхронные двигатели с соотношением скоростей 2:1; 8:3; 3:1; 10:3.

Ручные машины с электрическим приводом подключают к элек­тросети через преобразователи частоты с 50 на 400 Гц, что позво­ляет уменьшить их массу в 3,5 раза. Часто в приводах ручных ма­шин используют однофазные коллекторные электродвигатели с вы­сокой удельной мощностью на единицу массы и мягкой механи­ческой характеристикой. Коллекторные двигатели мало чувстви­тельны к колебаниям напряжения в питающей сети, устойчиво работают в режиме частых пусков, могут включаться в сеть без преобразователей. К их недостаткам можно отнести: высокую сто­имость и необходимость их обслуживания специалистами высо­кой квалификации.

Электродвигатели постоянного тока обеспечивают большую плавность пуска и торможения механизмов по сравнению с дви­гателями переменного тока. На рис. 3.8, а представлены механи­ческие характеристики приводов, работающих по системе трех- обмоточный генератор — двигатель. Они применяются, в част­ности, на экскаваторах средней мощности. Форма характеристи­ки может быть изменена соответствующим подбором ампер-вит­ков трех обмоток генератора: независимой, шунтовой и сериес- ной. На рис. 3.8, # показана механическая характеристика приво­да постоянного тока по системе генератор — двигатель с элект­ромашинными усилителями, применяемого на экскаваторах боль-

Какие типы двигателей применяют в строительных машинах

Рис. 3.8. Механические характеристики приводов постоянного тока

Источник

Подписка на рассылку

Электродвигатель является специальной машиной, которая электрическую энергию преобразует в механическую. Учитывая род тока электроустановки, в которой работает электрическая машина, используются основные типы электродвигателей — постоянного и переменного тока.

Электромоторы переменного тока подразделяются на синхронные и асинхронные. Асинхронные, в свою очередь, делятся на общепромышленные, взрывозащищенные и крановые.

Электромашины переменного тока бывают однофазными и трехфазными. На современном этапе довольно широкое применение находят трехфазные синхронные и асинхронные электромоторы.

Какие типы двигателей применяют в строительных машинах

Сегодня асинхронные электромоторы являются наиболее востребованными электрическими двигателями. Такую широкую популярность асинхронные устройства получили из-за своей простоты конструкции и довольно высокой эксплуатационной надежности. Асинхронный электродвигатель довольно часто применяют в бытовой технике и на промышленных предприятиях.

В тех случаях, когда в приводах не нужны большие пусковые моменты, применяют электродвигатель с короткозамкнутым ротором. А когда не требуется плавной регулировки скорости и мощность электродвигателя большая, используется асинхронный электродвигатель с фазным ротором. Электромоторы асинхронные с фазным ротором используются в тех случаях, когда нужно снизить пусковой ток и увеличить пусковой момент.

Асинхронные однофазные агрегаты применяются в сети переменного тока 220 вольт. Такие электромоторы нашли широкое применение в бытовых стиральных машинах, бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах, в деревообрабатывающих и сверлильных станках и другом бытовом оборудовании.

Асинхронные электрические двигатели также применяются для приводов различных крановых установок промышленного назначения, всевозможных грузовых лебедок и прочих устройств, которые применяются в производстве. Электромоторы переменного тока имеют огромное значение для многих отраслей промышленности. Асинхронные агрегаты могут быть с преобразовательным устройством в виде коллектора (коллекторные электродвигатели) или не иметь его (бесколлекторные электромоторы).

Коллекторные и бесколлекторные электродвигатели переменного тока применяются в различных промышленных и бытовых электроустройствах (холодильниках, пылесосах, мясорубках, электрическом инструменте, вентиляторах, соковыжималках) и в медицинской технике. Они рассчитаны на работу как от сети постоянного тока, так и от сети переменного тока. Для коллекторных электродвигателей характерен большой пусковой момент и относительно малые размеры.

Бесколлекторные электромоторы имеют малый уровень электромагнитных излучений и низкий уровень шума. Для них характерен высокий ресурс эксплуатации. В большинстве случаев бесколлекторные электродвигатели эксплуатируются в местах со взрывоопасной средой, например в нефтегазовой промышленности.

Довольно широкое распространение среди электромоторов переменного тока получили асинхронные электромоторы с трехфазной симметричной обмоткой на сердечнике статора, которые запитываются от сети переменного тока

Какие типы двигателей применяют в строительных машинах

Примечательно, что асинхронные электродвигатели, как правило, используются как двигатели, а синхронные электромоторы чаще всего используются как генераторы.

Синхронные электродвигатели являются двухобмоточными электрическими машинами, в которых одна из обмоток подсоединена к электрической сети с определенной постоянной частотой вращения, при этом вторая регулярно возбуждается постоянным током с частотой вращения ротора, которая не зависит от нагрузки. Такие машины применяются в качестве электродвигателей в крупных установках, таких как приводы поршневых компрессоров и воздухопроводов и, как правило, используются в качестве генераторов.

Скорость вращения синхронных моторов находится в постоянном соотношении к определенной частоте электрической сети.

Рольганговые электромоторы применяются для приводов, которые эксплуатируются в условиях высоких температур различного металлургического производства. Взрывозащищенные электромоторы предназначены для привода разных механизмов в газовой, химической, нефтеперерабатывающей промышленности, где могут появляться различные взрывоопасные соединения газов и паров с воздухом. Различные крановые электромоторы в основном предназначены для всевозможных крановых механизмов всех типов. Они могут быть применены для привода других механизмов, которые работают в кратковременных режимах эксплуатации.

Общепромышленные электромоторы широко используются в деревообрабатывающей промышленности, станкостроении, всевозможных системах промышленной вентиляции, различных транспортерах, подъемниках, всевозможном насосном оборудовании.

Источник

Классификация двигателей и их систем. Компоновка силовой установки машины

Двигатели могут быть классифицированы по различным признакам.

По назначению их подразделяют на стационарные и транспортные. К стационарным относятся двигатели генераторных, компрессорных, буровых и других установок. Они, как правило, работают в постоянном нагрузочном и скоростном режимах. К транспортным относятся двигатели автомобилей, тракторов, тепловозов, судов и других ТС.

По роду основного топлива для традиционных двигателей выделяют те, которые работают на тяжелом (дизельном) и легком (бензин, керосин) топливе, газовые, многотопливные и другие двигатели. Перспективным видом топлива для ТС в настоящее время считается водород.

По способу преобразования тепловой энергии в механическую различают двигатели внутреннего сгорания, у которых сгорание тогшивовоздушной смеси происходит внутри рабочего тела, и внешнего сгорания, у которых этот процесс осуществляется вне рабочего тела, и теплота передается через стенку.

По способу смесеобразования выделяют двигатели с внешним смесеобразованием (бензиновые карбюраторные и с впрыском топлива во впускной коллектор) и внутренним смесеобразованием (все дизели и бензиновые двигатели с непосредственным впрыском топлива в камеру сгорания).

По способу воспламенения рабочей жидкости различают двигатели с самовоспламенением и искровым зажиганием.

По способу осуществления рабочего цикла двигатели подразделяют на двух- и четырехтактные.

По способу регулирования мощности различают двигатели с количественным (изменяется количество смеси, поступающей в цилиндр), качественным (изменяется соотношение количества воздуха и топлива в смеси) и смешанным регулированием.

По конструкции традиционные двигатели подразделяют на поршневые, роторные, газотурбинные и другие, менее известные. На наземных ТС наиболее широкое распространение получили поршневые двигатели:

Различают двигатели без наддува и с наддувом, который может быть динамическим, с турбокомпрессором и приводным компрессором (нагнетателем), а также комбинированным.

В настоящее время на ТС применяют в основном дизели и бензиновые поршневые четырехтактные ДВС. Их отличают автономность, относительная экономичность и высокая удельная мощность. К недостаткам поршневых ДВС можно отнести неоптимальную скоростную, характеристику (изменение мощности и вращающего момента на коленчатом валу в зависимости от частоты его вращения), токсичность отработавших газов, трудность пуска при низких температурах, высокий уровень вибрации и шума.

На колесные и гусеничные тягачи, грузовые автомобили и другие ТС средней и большой грузоподъемности чаще всего устанавливают быстроходные рядные и V-образные дизели, поскольку они экономичнее по сравнению с бензиновыми двигателями, а используемое в них топливо более дешевое и менее пожароопасное. Кроме того, достоинством дизелей является возможность значительного увеличения их мощности за счет применения наддува. Вместе с тем следует отметить, что удельная мощность дизелей меньше, чем у бензиновых двигателей, их топливная аппаратура более сложная и дорогостоящая, а пусковые качества ниже.

Большинство легковых, а также некоторые грузовые автомобили малой и средней грузоподъемности имеют бензиновые двигатели, которые по сравнению с дизелями обладают облегченным пуском при низких температурах, большей компактностью, как правило, повышенной приемистостью и меньшей шумностью. Ранее применялись лишь карбюраторные бензиновые двигатели. В настоящее время наиболее широкое распространение получили двигатели с форсуночным (инжекторным) впрыском бензина.

Для некоторых тяжелых ТС перспективны газотурбинные двигатели. Их преимуществами являются высокая удельная мощность, многотопливность, малая токсичность отработавших газов, возможность выхода на режим максимальной мощности двигателя сразу после пуска, низкий расход смазочного масла, хорошие пусковые качества при низких температурах, автоматическое изменение вращающего момента на валу в довольно широких пределах, малая продолжительность обслуживания, более плавная работа, пониженный уровень вибрации и меньшая эксплуатационная стоимость. К основным недостаткам газотурбинного двигателя, которые ограничивают его использование, следует отнести относительно высокий расход топлива (особенно при малых нагрузках и на холостом ходу), значительный расход воздуха, невысокие динамические (разгонные) характеристики и низкую надежность, связанную с проблемой обеспечения прочности турбинного колеса, которое работает в очень тяжелых температурных условиях.

Агрегаты СУ, обслуживающие двигатель, входят в определенные системы. Различают системы питания топливом, питания воздухом, охлаждения, подогрева двигателя, пуска двигателя, выпуска отработавших газов и смазочную систему. Для бензиновых двигателей с внешним смесеобразованием обычно не разделяют системы питания топливом и воздухом, а говорят просто о системе питания.

Взаимное расположение двигателя и агрегатов его вспомогательных систем в силовом отделении ТС отличается многообразием. Наиболее существенное влияние на компоновку СУ оказывают расположение двигателя в машине, его связь с трансмиссией, тип системы охлаждения, размещение ее агрегатов, топливных и масляных баков.

Все виды компоновочных решений СУ подчиняются общим требованиям, основными из которых являются изоляция СУ от других отделений ТС, рациональное использование объема машины, обеспечение эффективной и надежной работы двигателя и обслуживающих его систем, удобство доступа к агрегатам СУ при обслуживании и ремонте, удобство установки и снятия двигателя и агрегатов его систем.

По взаимному расположению двигателя, кабины (салона, отделения управления) и грузовой платформы (кузова, десантного отделения) различают шесть схем компоновки СУ с двигателем, расположенным:

На колесных машинах общетранспортного назначения чаще всего применяются первая и вторая схемы, реже — третья. Компоновка СУ с расположением двигателя за кабиной (четвертая схема) используется в основном на тяжелых колесных тягачах, гусеничных тягачах малой и средней грузоподъемности. Пятая схема компоновки (двигатель находится в средней части машины) характерна для специальных ТС, назначение которых не позволяет устанавливать двигатель в другом месте. Двигатель, размещенный в задней части ТС, имеют многие гусеничные машины, автобусы и некоторые колесные машины специального назначения.

Двигатель может устанавливаться как вдоль, так и поперек продольной оси ТС. При продольном расположении двигателя его связь с агрегатами трансмиссии, как правило, наиболее проста (в наибольшей мере это относится к полноприводным многоосным колесным машинам). Однако в этом случае силовое отделение часто имеет большую длину, а в трансмиссии обязательно при-меняются конические зубчатые колеса. При поперечном расположении двигателя значительно сокращается длина силового отделения, но в ряде случаев усложняется связь двигателя с трансмиссией.

В моторном отделении машины двигатель может располагаться вертикально (чаще всего), наклонно или горизонтально. Последний вариант осуществляется тогда, когда небольшая высота моторного отделения имеет решающее значение по компоновочным соображениям.

Все агрегаты систем СУ должны располагаться как можно ближе к двигателю с целью наиболее рационального использования объема силового отделения и сокращения длины соединительных трубопроводов. В случае применения коротких трубопроводов уменьшается вибрация, вызывающая поломки и нарушение герметичности соединений, и снижается гидравлическое сопротивление, что в конечном счете повышает надежность и КПД двигателя и его систем.

Агрегаты СУ, требующие в процессе эксплуатации ТС периодического обслуживания (топливные и масляные фильтры, воздухоочистители, насосы, краны и др.), следует размещать в доступных местах. Эта задача часто весьма сложна, особенно при плотной компоновке моторного отделения. В связи с этим стремятся создавать такие конструкции агрегатов, которые не требуют периодического обслуживания в течение гарантийного срока службы двигателя.

Топливные баки размещают на свободных местах после определения положения двигателя, трансмиссии и других крупных агрегатов.

Воздухоочистители необходимо располагать в верхней части моторного отделения, где запыленность воздуха минимальна, и как можно ближе к двигателю, что уменьшит сопротивление впускного трубопровода.

Особенности размещения в силовом отделении жидкостных и масляных радиаторов или теплообменников определяются типами системы охлаждения и вентилятора.

Основными оценочными параметрами СУ в целом являются масса и габаритные размеры двигателя, а также всех обслуживающих его агрегатов и систем.

У современных колесных и гусеничных ТС доля массы СУ в общей массе машины довольно велика (до 20… 30 %). Наиболее тяжелый агрегат — двигатель, однако суммарная масса вспомогательных агрегатов (топливные баки с горючим, радиаторы, воздухоочистители, топливные и масляные фильтры, пусковые устройства и др.) также значительна.

Источник

Приводы строительных машин. Силовое оборудование

скачать
Глава 3. ПРИВОДЫ СТРОИТЕЛЬНЫХ МАШИН. СИЛОВОЕ ОБОРУДОВАНИЕ

3.1. Общие понятия и определения

Приводом называют энергосиловое устройство, приводящее в движение машину. Привод состоит из источника энергии (сило­вой установки), передаточного устройства (трансмиссии) и сис­темы управления для приведения в действие механизмов маши­ны, а также для их отключения.

Силовой установкой называют комплект, состоящий из двига­теля и обслуживающих его устройств. Например, в случае двигате­ля внутреннего сгорания — топливного бака, устройств для ох­лаждения, отвода выхлопных газов и т. п.

Трансмиссии могут быть механическими, электрическими, гид­равлическими, пневматическими и смешанными. Только в меха­нических и смешанных трансмиссиях на их механических участ­ках механическое движение передается без его преобразования в другие формы энергии. Во всех других случаях вращательное дви­жение выходного вала двигателя силовой установки с помощью электрогенераторов, гидравлических или пневматических насо- | сов преобразуется соответственно в электрическую энергию, энергию движения рабочей жидкости или энергию сжатого воз­духа, которая поступает к электро-, гидро- или пневмодвигате-лям, повторно преобразующим ее в механическое движение. Все указанные двигатели входят в состав трансмиссий. Соответствен­но различают электрические, гидравлические и пневматические трансмиссии.

Обычно свое наименование привод получает по типу двигате­ля силовой установки (от карбюраторного двигателя, дизельный), виду используемой энергии внешнего источника (электрический, I пневматический) или типу трансмиссии (гидравлический, дизель- ‘ электрический и т.п.).

Если на машине установлено нескольких рабочих органов или исполнительных механизмов и все они приводятся в движение от одного двигателя, то привод называют одномоторным или группо­вым. Если же часть или все рабочие органы, или исполнительные механизмы приводятся от собственных двигателей, то привод на­зывают многомоторным. При индивидуальном приводе исполнитель­ных механизмов трансмиссионные двигатели могут питаться энер-

гией от одного генератора (насоса), индивидуально — каждый дви­гатель от своего генератора (индивидусыьный привод) или по сме­шанной схеме. В случае использования индивидуального электри­ческого привода каждый электродвигатель, приводящий в движе­ние соответствующий рабочий орган или исполнительный меха­низм, может питаться непосредственно от электросети. В последнее время на машинах с несколькими рабочими органами или испол­нительными механизмами используют преимущественно индиви­дуальный привод, обладающий более высоким коэффициентом по­лезного действия (КПД) по сравнению с групповым приводом, простотой и агрегатностью конструкции, лучшей приспособлен­ностью к автоматизации управления, лучшими условиями эксплу­атации и ремонта.

При оценке эффективности приводов строительных машин предпочтение следует отдавать тем приводам, которые имеют мень­шие габаритные размеры и массу, обладают высокой надежно­стью и готовностью к работе, высоким КПД, просты в управле­нии, более приспособлены к автоматизации управления, обеспе­чивают независимость рабочих движений и возможность их со­вмещения.

Рассмотрим более подробно сущность понятия передачи дви­жения рабочему органу машины в условиях преодоления им внеш­них сопротивлений. Основная составляющая этих сопротивлений определяется, прежде всего, свойствами преобразуемого матери­ала и характером процесса преобразования. Например, при рабо­те водоотливной насосной установки внешними сопротивления­ми будут: сила тяжести поднимаемой воды и силы трения при ее передвижении по трубопроводам. В этом случае сопротивления практически неизменны во времени. При разработке грунта ков­шом экскаватора, отвалом бульдозера и другими машинами со­противления копанию нарастают от минимального до максималь­ного значения, многократно повторяясь в процессе каждой опе­рации копания.

В условиях постоянных или слабо изменяющихся во времени внешних сопротивлений привод работает в спокойном режиме практически с постоянной скоростью на его выходном звене. При изменяемых во времени внешних сопротивлениях, кроме внут­ренних сопротивлений, к ним добавляются динамические со­ставляющие, обусловленные внешней (механической) характери­стикой привода — функциональной зависимостью между его силовым и скоростным факторами на выходном звене. Обычно эти факторы связаны между собой обратной зависимостью — чем больше внешнее сопротивление, тем меньше скорость движения выходного звена. Такая зависимость представлена на рис. 3.1 для случая вращательного движения выходного звена привода, где через Г, со и л обозначены соответственно вращающий момент, угловая скорость и частота враще­ния выходного звена. Если, напри­мер, на временном интервале Д/ со­противление возрастает от Г, до Т2, то, согласно внешней характери­стике привода, угловая скорость снижается за то же время с со ] до со2 — выходное звено вращается с замедлением. Согласно второму за­кону механики этому замедлению соответствует пропорциональный ему динамический момент проти­воположного внешнему сопротив­лению направления. Складываясь с внешним сопротивлением, ди­намический момент уменьшает его значение. Природа этого явле­ния заключается в том, что движущаяся система при снижении скорости расходует накопленную в ней энергию на преодоление возрастающих вКакие типы двигателей применяют в строительных машинахнешних сопротивлений.

С уменьшением внешних сопротивлений скорость со возраста­ет, ускорение положительно, а поэтому динамический момент также положителен, т.е. с возрастанием скорости энергия приво­да расходуется на преодоление внешних сопротивлений и на на­копление энергии в движущейся системе. Таким образом, при­вод как бы выравнивает приведенное к его выходному звену со­противление с одновременным снижением скорости при возраста­нии внешнего сопротивления и ее увеличением при снижении пос­леднего. Такая приспособленность привода к условиям его нагру-жения будет тем больше, чем больше момент инерции враща­ющихся масс привода и чем меньше первая производная/= dT/d(a, называемая жесткостью механической характеристики привода. Ха­рактеристики с высокими значениями этой величины называют жесткими, а с низкими значениями — мягкими. Степень жест­кости механической характеристики определяется, прежде всего, типом двигателя. Жесткость/может быть понижена за счет вклю­чения в состав привода дополнительных устройств, в частности — гидротрансформатора (см. гл. 5).

Для характеристики режимов работы привода отдельных меха­низмов и машин в целом пользуются отношениями максимальных значений усилий (вращающих моментов) Ртахтах) и скоростей t>max (comax) на выходном звене привода к их средним значениям соот­ветственно Рсрср) и vcp (соср), продолжительностью включений (ПВ) в процентах от общего времени работы машины и количеством вклю­чений KB в час. В зависимости от степени изменения этих парамет­ров, которые колеблются в пределах Tmm/Tcp = 1,1. 3,0 (для враща­тельного движения), ПВ = 15. 100 %, KB = 10. 600, режимы нагру-жения многих машин и их механизмов условно подразделяют на

легкий, средний, тяжелый и весьма тяжелый. Для некоторых ма­шин, например строительных кранов, для определения режимов работы используют также другие дополнительные факторы. Важ­ной характеристикой привода, определяющей его способность пре­одолевать сопротивления, значительно превышающие их средние значения, является коэффициент перегрузочной способности кпер отношение максимального момента 7^ по механической характе­ристике привода к его номинальному значению Тн.

3.2. Двигатели внутреннего сгорания

Двигатели внутреннего сгорания (ДВС) относятся к группе тепловых двигателей. В ДВС химическая энергия топлива, сгора­ющего в рабочих полостях цилиндров, преобразуется в механиче­скую энергию.

История создания ДВС восходит к середине XIX в., когда в 1860 г. французским механиком Э.Ленуаром был сконструирован первый прак­тически пригодный газовый ДВС. В 1876 г. немецкий изобретатель Н.От-то построил более совершенный четырехтактный газовый двигатель. Пер­вый бензиновый карбюраторный двигатель был построен в России О.С.Костовичем в 80-х гг. XIXв., а первый дизельный двигатель — не­мецким инженером Р.Дизелем в 1897 г., впоследствии (1898—1899 гг.) усовершенствованный на заводе Л. Нобеля в Петербурге. С этого време­ни дизельный двигатель становится наиболее экономичным ДВС. В 1901 г. в США был разработан первый трактор с ДВС. В то же время братьями О. и У. Райт был построен первый самолет с ДВС, начавший свои поле­ты в 1903 г. В том же году русские инженеры установили ДВС на судне «Вандал», создав первый теплоход. Первый поездной тепловоз был со­здан в 1924 г. в Ленинграде по проекту Я. М. Гаккеля.

В ДВС все процессы сгорания топлива, выделения теплоты и превращения ее в механическую энергию происходят в рабочих цилиндрах 5 (рис. 3.2 и 3.3) при перемещениях в них поршней 4, приводящих во вращение коленчатый вал 1 через шатуны 2 во вре­мя рабочего хода и приводимых в движение коленчатым валом на всех других этапах рабочего цикла. В приводах строительных машин применяют многоцилиндровые карбюраторные и дизельные (дизе­ли) двигатели с четырьмя (рис. 3.4), шестью, восемью или двенад­цатью цилиндрами, работающими на жидком топливе — бензине (карбюраторные двигатели) или дизельном топливе (дизели).

ДКакие типы двигателей применяют в строительных машинахВС является сложным механическим устройством, состоящим из корпуса, кривошипно-шатунного механизма, механизма газо­распределения, систем смазки, охлаждения, питания, зажигания (для карбюраторных двигателей), пуска, впуска и выпуска.

[ ^ Рабочим циклом или рабочим процессом ДВС называют после­довательность периодически повторяющихся процессов (впуск, сжатие и сгорание топлива, расширение образовавшихся при сгорании газов и их выпуск)|Часть рабочего цикла, совершаемого за ход поршня в одном направлении, называют тактом,, В приводах строительных машин, кроме малых машин, применяют обычно четырехтактные двигатели, у которых рабочий цикл совершается за четыре такта или за два оборота коленчатого вала.

[Рабочий цикл четырехтактного карбюраторного двигателя пред­ставлен схемой (см. рис. 3.2). В течение первого такта (см. рис. 3.2, а) приводимый коленчатым валом 1 через шатун 2 поршень 4 пере­мещается вниз, всасывая в рабочую полость цилиндра 5 через от­крытый впускной клапан 6 топливо-воздушную смесь из паров бензина и воздуха, поступающую из карбюратора — специального устройства для ее приготовления. На втором такте (см. рис. 3.2, б) поршень, также приводимый коленчатым валом, перемещается снизу вверх, сжимая находящуюся в цилиндре рабочую смесь при закрытых впускном ^ Удельным расходом топлива называют отношение его часового расхода к мощности на коленчатом валу.

Под эффективным КПД понимают отношение указанной выше мощности к затраченной теплоте использованного топлива. Дизели обладают более высоким эффективным КПД (0,35. 0,45) по срав­нению с карбюраторными двигателями (0,26. 0,32), а также более низким удельным расходом топлива [190. 240 г/(кВт-ч) при 280. 320 г/(кВт-ч)] у карбюраторных двигателей. В выхлопных газах дизелей содержится меньше токсичных веществ. К недостаткам ди­зелей относятся: затруднения в запуске при низких температурах, высокая чувствительность к перегрузкам, а также большая масса.

Зависимость крутящего момента Г на коленчатом валу ДВС от частоты вращения вала п называют механической характеристикой двигателя (рис. 3.5). Из семейства скоростных ветвей /, 2, 3 и т.д. пер­вая, соответствующая максимальной подаче топлива в рабочие цилинд­ры двигателя, называется внешней, а все другие, при уменьшенной по­даче топлива — промежуточными. Ре-гуляторной ветвью 4 с помощью спе­циального устройства — регулятора отсекаются участки скоростных вет­вей при больших частотах п. Основ­ными параметрами механической ха­рактеристики дизеля (на внешней скоростной ветви) служат: номи­нальные момент Тн и частота вращения коленчатого вала пн, мак­симальный момент Гтах и соответствующая ему частота пт, а так­же частота холостого хода п0. Как и для привода в целом (см. под-разд. 3.1), отношение А;пер = Ттахн называют коэффициентом пере­грузочной способности. Для дизелей обычно кпер = 1,1. 1,15. Пред­ставленные на рис. 3.5 характеристики не учитывают влияния ма­ховика.

Какие типы двигателей применяют в строительных машинах

Из двух текущих параметров работы дизеля — момента на ко­ленчатом валу ^ Т и частоты его вращения п — первый однозначно определяется внешней нагрузкой, характер изменения которой во времени t зависит от многих факторов, прежде всего, от со­противлений на рабочем органе. При спокойной внешней нагруз­ке (рис. 3.6, а) ее максимальное значение Гтах незначительно отли­чается от среднего значения Тср, что позволяет работать дизелю вблизи рабочей точки с номинальным моментом ТИ, при частоте вращения, близкой к пн. При этом полезно используемая мощ­ность будет наибольшей. В случае значительного превышения вне­шних сопротивлений над средним (рис. 3.6, б) во избежание ос­тановки двигателя, рабочую точку на механической характери­стике дизеля (см. рис. 3.5), соответствующую Тср, приходится вы­бирать ниже номинальной, жертвуя при этом эффективным КПД. Текущая рабочая точка по моменту будет все время менять свое положение на регуляторной ветви, соответственно характеру на-гружения (см. рис. 3.6, б). При этом также будет изменяться час­тота вращения коленчатого вала в диапазоне пн TD. В противном случае уже на первом этапе (участок АВ) частота п = пв не будет достигнута, а, следовательно, первое со­противление не будет отключено, и дальнейшая работа возможна только на искусственной характеристике 2. При необходимости указанное условие обеспечивается снижением момента TD, в част­ности, путем отключения трансмиссии или исполнительного ме­ханизма от двигателя.

Искусственные характеристики, обладающие меньшими жест-костями по сравнению с естественной характеристикой, могут быть также использованы в качестве рабочих характеристик, ког­да необходимо плавно изменять скорости рабочих движений. Ко-роткозамкнутые двигатели запускаются и работают только на ес­тественной характеристике.

В приводах грузоподъемных машин для плавной посадки гру­зов, например, на монтаже конструкций, а также для ускоренно­го опускания грузозахватных устройств, применяют двухскорост-ные асинхронные двигатели с соотношением скоростей 2:1; 8:3; 3:1; 10:3.

РКакие типы двигателей применяют в строительных машинахучные машины с электрическим приводом подключают к элек­тросети через преобразователи частоты с 50 на 400 Гц, что позво­ляет уменьшить их массу в 3,5 раза. Часто в приводах ручных ма­шин используют однофазные коллекторные электродвигатели с вы­сокой удельной мощностью на единицу массы и мягкой механи­ческой характеристикой. Коллекторные двигатели мало чувстви­тельны к колебаниям напряжения в питающей сети, устойчиво работают в режиме частых пусков, могут включаться в сеть без преобразователей. К их недостаткам можно отнести: высокую сто­имость и необходимость их обслуживания специалистами высо­кой квалификации.

Электродвигатели постоянного тока обеспечивают большую плавность пуска и торможения механизмов по сравнению с дви­гателями переменного тока. На рис. 3.8, а представлены механи­ческие характеристики приводов, работающих по системе трех-обмоточный генератор — двигатель. Они применяются, в част­ности, на экскаваторах средней мощности. Форма характеристи­ки может быть изменена соответствующим подбором ампер-вит­ков трех обмоток генератора: независимой, шунтовой и сериес-ной. На рис. 3.8, б показана механическая характеристика приво­да постоянного тока по системе генератор — двигатель с элект­ромашинными усилителями, применяемого на экскаваторах большой мощности. Такие характеристики имеют участки малой и повышенной жесткости, что позволяет применять их как в при­водах рабочих органов или исполнительных механизмов, требу­ющих плавности изменения скоростей рабочих движений, так и при стабильной скорости, независящей от изменения внешней нагрузки.

1. Что такое привод машины? Из чего он состоит?

2. Обоснуйте преимущественное применение строительных машин с автономными двигателями перед машинами, работающими от внешней энергетической сети. В каких производственных условиях для привода строительных машин используют энергию электро- и пневмосети? В ка­ких случаях для привода малых машин применяют компрессоры?

3. Что такое силовая установка машины? Из чего она состоит? Приве­дите пример.

4. Перечислите виды механических трансмиссий.

5. Какие трансмиссии передают движение с преобразованием энер­гии в другие формы, отличные от механической? Какие устройства обес­печивают эти преобразования?

6. Приведите классификацию трансмиссий для привода нескольких рабочих органов или исполнительных механизмов. Какой вид привода имеет преимущественное применение в строительных машинах? Обо­снуйте ответ.

7. Какими основными показателями оценивают эффективность при­вода строительных машин?

8. От чего зависит внешнее сопротивление на рабочем органе? Каков характер этого сопротивления? Приведите примеры.

9. Что такое сопротивление движению рабочего органа? Из чего оно складывается? Что является источником динамического сопротивления? Как влияет на его формирование механическая характеристика приво­да? Как влияет динамическая составляющая на общее внешнее сопро­тивление?

10. Что такое жесткость механической характеристики привода? Ка­кие характеристики называют жесткими? мягкими?

11. Какими показателями пользуются для характеристики режимов работы машин и их механизмов? Приведите классификацию режимов.

12. Что такое коэффициент перегрузочной способности привода?

13. Какую энергию преобразуют двигатели внутреннего сгорания в механическое движение 9

14. Какие типы двигателей внутреннего сгорания применяют в при-водах строительных машин? На каких видах топлива они работают?

15. Что такое рабочий цикл или рабочий процесс двигателя внутренне­го сгорания? Что такое такт? Опишите рабочий цикл четырехтактного карбюраторного двигателя. Чем отличается от него рабочий цикл дизеля?

16. Для чего в конструкциях двигателей внутреннего сгорания приме­няют несколько рабочих цилиндров? Каков порядок их работы?

17. Каково назначение маховика в конструкции двигателя внутренне­го сгорания?

18. Назовите способы запуска двигателей внутреннего сгорания. Ка­кие для этого применяют устройства? Чем обусловлен затрудненный за­пуск двигателей внутреннего сгорания при низкой температуре окружа­ющего воздуха? Какие устройства применяют для облегчения запуска?

19. Какими основными показателями характеризуют работу двигате­лей внутреннего сгорания? Что такое удельный расход топлива, эффек­тивный КПД? Каковы их значения для дизелей и карбюраторных двига­телей?

20. Что такое механическая характеристика двигателя внутреннего сго­рания? Из каких ветвей она состоит? Как получаются промежуточные скоростные характеристики? Назовите характерные точки внешней ме­ханической характеристики. Что такое коэффициент перегрузочной спо­собности, каково его значение для дизелей?

21. Какая ветвь механической характеристики двигателя внутреннего сгорания является рабочей? К какому виду по жесткости она относится? Как влияет характер изменения внешней нагрузки во времени на поло­жение текущей точки на механической характеристике? Какие участки механической характеристики предпочтительны и почему?

22. Какие типы электрических двигателей применяют в приводах стро­ительных машин?

23. Назовите параметры электрической сети для питания двигателей переменного тока.

24. Какими преимуществами и недостатками обладают асинхронные двигатели?

25. Приведите механическую характеристику асинхронного электро­двигателя и опишите ее характерные точки. Что такое естественная и искусственная механические характеристики? Какой участок механиче­ской характеристики считается рабочим, к какому виду по жесткости он относится? Каковы значения коэффициента перегрузочной способно­сти асинхронных двигателей?

26. Что такое пусковой момент асинхронного двигателя? Каковы его значения для двигателей короткозамкнутых и с фазным ротором? Для чего в цепь ротора фазного двигателя включают дополнительные сопро­тивления? Какие механические характеристики им соответствуют? Опишите запуск электродвигателя с фазным ротором с использованием пус­ковых сопротивлений.

27. Для чего в приводах грузоподъемных машин применяют двухеко-ростные электродвигатели?

28. Какие электродвигатели применяют в приводах ручных машин? Каковы их особенности?

29. Какие типы двигателей постоянного тока применяют в приводах строительных машин? Каковы их механические характеристики? Чем ограничено их применение?

Источник

Видео

Виды и типы автомобильных двигателей. ГБО на авто.

Виды и типы автомобильных двигателей. ГБО на авто.

Синхронный и асинхронный двигатели. Отличия двигателей

Синхронный и асинхронный двигатели. Отличия двигателей

ПОЧЕМУ ЗАПРЕТИЛИ ЭТИ ДВИГАТЕЛИ? Документальный фильм про альтернативные ДВС и авто технологии

ПОЧЕМУ ЗАПРЕТИЛИ ЭТИ ДВИГАТЕЛИ? Документальный фильм про альтернативные ДВС и авто технологии

НЕОБЫЧНЫЕ И ПЕРСПЕКТИВНЫЕ ДВИГАТЕЛИ. Двигатель будущего

НЕОБЫЧНЫЕ И ПЕРСПЕКТИВНЫЕ ДВИГАТЕЛИ. Двигатель будущего

Классификация дорожно-строительных машин

Классификация дорожно-строительных машин

Чем отличается асинхронный электро двигатель от синхронного, как устроен электро двигатель

Чем отличается асинхронный электро двигатель от синхронного, как устроен электро двигатель

Как работает двигатель внутреннего сгорания автомобиля?

Как работает двигатель внутреннего сгорания автомобиля?

⚫ САМЫЙ ГЕНИАЛЬНЫЙ ДВИГАТЕЛЬ. почему порше и субару используют оппозит

⚫ САМЫЙ ГЕНИАЛЬНЫЙ ДВИГАТЕЛЬ. почему порше и субару используют оппозит

Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Асинхронные и Синхронные двигатели и генераторы. Мощный #энерголикбез ПЕРСПЕКТИВЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

СТРОИТЕЛЬНАЯ СПЕЦТЕХНИКА ПРИ СТРОИТЕЛЬСТВЕ ДОМА

СТРОИТЕЛЬНАЯ СПЕЦТЕХНИКА ПРИ СТРОИТЕЛЬСТВЕ ДОМА
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.