Лекции по системам шин + видео обзор

Шины микропроцессорной системы и циклы обмена

Циклы обмена информацией делятся на два основных типа:

В некоторых микропроцессорных системах существует также цикл «чтение-модификация- запись » или же «ввод-пауза- вывод «. В этих циклах процессор сначала читает информацию из памяти или устройства ввода/вывода, затем как-то преобразует ее и снова записывает по тому же адресу. Например, процессор может прочитать код из ячейки памяти, увеличить его на единицу и снова записать в эту же ячейку памяти. Наличие или отсутствие данного типа цикла связано с особенностями используемого процессора.

Особое место занимают циклы прямого доступа к памяти (если режим ПДП в системе предусмотрен) и циклы запроса и предоставления прерывания (если прерывания в системе есть). Когда в дальнейшем речь пойдет о таких циклах, это будет специально оговорено.

Во время каждого цикла устройства, участвующие в обмене информацией, передают друг другу информационные и управляющие сигналы в строго установленном порядке или, как еще говорят, в соответствии с принятым протоколом обмена информацией.

Длительность цикла обмена может быть постоянной или переменной, но она всегда включает в себя несколько периодов сигнала тактовой частоты системы. То есть даже в идеальном случае частота чтения информации процессором и частота записи информации оказываются в несколько раз меньше тактовой частоты системы.

Чтение кодов команд из памяти системы также производится с помощью циклов чтения. Поэтому в случае одношинной архитектуры на системной магистрали чередуются циклы чтения команд и циклы пересылки (чтения и записи) данных, но протоколы обмена остаются неизменными независимо от того, что передается — данные или команды. В случае двухшинной архитектуры циклы чтения команд и записи или чтения данных разделяются по разным шинам и могут выполняться одновременно.

2.1. Шины микропроцессорной системы

Прежде чем переходить к особенностям циклов обмена, остановимся подробнее на составе и назначении различных шин микропроцессорной системы.

Шина данных — это основная шина, ради которой и создается вся система. Количество ее разрядов (линий связи) определяет скорость и эффективность информационного обмена, а также максимально возможное количество команд.

Шина данных всегда двунаправленная, так как предполагает передачу информации в обоих направлениях. Наиболее часто встречающийся тип выходного каскада для линий этой шины — выход с тремя состояниями.

Лекции по системам шин

Шина управления — это вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла. Кроме того, управляющие сигналы обеспечивают согласование работы процессора (или другого хозяина магистрали, задатчика, master) с работой памяти или устройства ввода/вывода (устройства-исполнителя, slave ). Управляющие сигналы также обслуживают запрос и предоставление прерываний, запрос и предоставление прямого доступа.

Сигналы шины управления могут передаваться как в положительной логике (реже), так и в отрицательной логике (чаще). Линии шины управления могут быть как однонаправленными, так и двунаправленными. Типы выходных каскадов могут быть самыми разными: с двумя состояниями (для однонаправленных линий), с тремя состояниями (для двунаправленных линий ), с открытым коллектором (для двунаправленных и мультиплексированных линий).

Лекции по системам шин

По используемому типу обмена магистрали микропроцессорных систем также делятся на синхронные и асинхронные.

Источник

Тема «Изучение устройства колес и шин»

Лекции по системам шин Лекции по системам шин Лекции по системам шин Лекции по системам шин

Лекции по системам шин

Лекции по системам шин

Цель работы: 1. Закрепить знания по устройству колес и шин автомобилей.

2. Сформировать умение определять характерные неисправности колес и шин.

Краткие теоретические сведения

Колеса являются принимающей стороной крутящего момента от двигателя. Путем сцепления с дорогой они способствуют движению автомобиля, принимают удары и толчки из-за неровностей, а затем сглаживают их. Торможение, разгон зависят также от колес. Устройство колес представлено на рисунке 1. Оно включает в себя диск с ободом и шины.

Лекции по системам шин

Диск. К диску крепится обод, сам диск прикреплен к ступице колеса коническими болтами или гайками.

Колеса транспортных средств подразделяются на одинарные и сдвоенные. Одинарное колесо устанавливается на одной ступице и несет одну шину, а сдвоенное имеет два обода, смонтированных на одной ступице и несущих две шины. На автомобилях применяются дисковые колеса, колеса с разборным ободом и составные.

Дисковое колесо — это неразборный узел, состоящий из обода колесного диска. Дисковое колесо грузового автомобиля может иметь составной обод, один из бортов которого состоит из съемного разрезного замочно-посадочного кольца и съемного бортового кольца, которые в сборе образуют обод

Колесо с разборным ободом — это колесо, в котором один или два разборных обода крепятся непосредственно на ступице, развитой до размера обода. Такие колеса широко применяются на тяжелых автомобилях и автобусах.

Составное колесо состоит из двух элементов, каждый из которых включает часть обода. После сборки элементы образуют обод с двумя закраинами. Такие колеса применяются для крупногабаритных широкопрофильных шин и шин с регулируемым давлением.

Лекции по системам шин

Рис. Колесо с разборным ободом:
1 — о6од, 2 — прижим; 3 — ступица

Соединение колеса со ступицей обеспечивает передачу крутящего момента и центрирование колеса на ступице. Крепление штампованных дисковых колес легковых автомобилей производится, как правило, с помощью болтов или гаек, имеющих коническую центрирующую поверхность. Центрирование литых дисков колес осуществляется по посадочному пояску ступицы. Узел крепления включает шпильки и унифицированные гайки, снабженные свободно вращающимися шайбами, которые исключают возможность повреждения диска. Вместо шпилек и гаек могут использоваться болты.

Пневматическая шина — это упругая оболочка, предназначенная для установки на ободе колеса и заполняемая воздухом под давлением. Основным элементом шины является покрышка, непосредственно воспринимающая нагрузки на шину со стороны дороги. Она состоит из каркаса, протектора, брекера, бортов и боковин.

Каркас — это силовая часть покрышки, состоящая из одного или нескольких слоев корда, закрепленных на боковых кольцах.

Лекции по системам шин

Протектор — наружная резиновая часть покрышки с рельефным рисунком, обеспечивающая сцепление шины с дорогой предохраняющая каркас от повреждений.

Брекер — часть покрышки, состоящая из слоев корда или резины и способствующая более равномерному распределению по поверхности колеса действующих на него нагрузок.

Борта — это жесткие части покрышки, служащие для крепления шины на ободе.

Боковины — резиновый слой, покрывающий боковые стенки каркаса и предохраняющий его от механических повреждений и проникновения влаги.

По конструкции каркаса и брекера различают диагональные и радиальные шины. По способу герметизации внутренней полости (при сборке с ободом) шины бывают камерные и бескамерные.

Лекции по системам шинЛекции по системам шин

Основные нормативные требования к шинам транспортных средств установлены Правилами эксплуатации автомобильных шин. на которые имеется соответствующая ссылка в СТБ 1641-2006. В соответствии с этими требованиями выбор шин по размерам. моделям, грузоподъемности, типу рисунка протектора для каждой модели транспортного средства должен производиться согласно рекомендациям их производителей. При этом в инструкции по эксплуатации транспортного средства должны быть указаны размеры применяемых шин и рекомендуемые режимы их работы.

Шины, восстановленные по первому классу, применяются без ограничений на всех осях транспортных средств, за исключением междугородных автобусов. Шины, восстановленные по второму классу, применяются на колесах всех осей грузовых автомобилей и прицепов (полуприцепов), а также автобусов, кроме междугородных, и задних осях легковых автомобилей. В целях обеспечения безопасности движения запрещается устанавливать шины с отремонтированными местными повреждениями на передних осях механических транспортных средств.

Для улучшения сцепных качеств шин и повышения безопасности движения на заснеженных и обледенелых дорогах могут применяться шины с шипами противоскольжения. Данные шины должны быть установлены на всех колесах (в том числе запасном) транспортного средства.

Согласно Правилам дорожного движения и СТБ 1641-2006 не допускается установка на одну ось автобуса, легкового автомобиля или прицепа к нему, грузового автомобиля или прицепа к нему диагональных шин совместно с радиальными или шин различным типом рисунка протектора.

Высота рисунка протектора должна быть не менее:

· для легковых автомобилей — 1,6 мм

· для грузовых — 1,0; для автобусов — 2,0 мм

· для прицепов и полуприцепов — тех же значений, что и для тягачей

Шина считается непригодной к эксплуатации, если на ней имеется участок беговой дорожки с размерами, высота рисунка протектора на котором меньше нормативных значений.

Шина считается непригодной к эксплуатации, если проявился один индикатор при равномерном износе или два индикатора в каждом из двух сечений при неравномерном износе беговой дорожки.

Система контроля давления воздуха в шинах с использованием специального контрольного устройства (колпачков Easy Control). Наиболее простым и дешевым способом постоянного контроля давления в шинах является установка на колесе вместо штатного колпачка ниппеля специального контрольного устройства

Система контроля давления воздуха в шинах с использованием радиосигнала состоит из датчиков давления воздуха навинченных на металлические корпуса вентилей, от которых передается радиосигнал на приемную систему, передатчиков, устанавливаемых обычно в арках колес, электронного блока управления. В крыше находится приемная антенна системы контроля давления. Некоторые производители вместо передатчиков устанавливают антенны в арках колес.

Лекции по системам шин

Лекции по системам шин

Рис. Датчик давления воздуха в шине:
1 – передающая антенна; 2 – чувствительные элементы датчиков и температуры; 3 – электронные элементы измерения и управления; 4 – элемент питания

Датчик давления измеряет текущее (абсолютное) давление в шине. Чувствительные элементы датчиков давления и температуры, а также электронные элементы измерения и управления объединены в общем корпусе.

Шина автомобиля воспринимает вертикальную нагрузку от веса автомобиля и все усилия, возникающие в пятне контакта шины с дорогой при ускорении, торможении и повороте автомобиля, смягчая силовые воздействия на автомобиль.

На легковых автомобилях применяются пневматические камерные и бескамерные шины, при этом последние имеют преимущественное использование. Внутреннее покрытие бескамерной шины изготавливается из слоя воздухонепроницаемой резины толщиной 2…3 мм, а на наружную поверхность борта наносят эластичную резину, которая обеспечивает герметичность при посадке шины на обод. Вентиль бескамерной шины образует герметичное соединение при установке его в отверстие обода колеса. При проколе бескамерной шины небольшим предметом, растягивается воздухонепроницаемый внутренний слой резины шины и обволакивается ею. При этом воздух из бескамерной шины выходит очень медленно, в отличие от камерной, поэтому бескамерные шины более безопасны.

В конструкцию колеса входят: диск с ободом, опорное кольцо, шина и датчик давления в шине. Опорное кольцо закреплено в середине обода посредством элементов с геометрическим замыканием. Это кольцо изготовляется из прочного синтетического материала, которому придается сотовая структура. Борта шины не зажимаются закраинами обода, а устанавливаются в посадочные канавки на нем.

Лекции по системам шин

Рис. Конструкция колеса аварийной системы PAX:
1 – опорное кольцо; 2 – шина; 3 – глицериновый гель; 4 – обод колеса.

Принцип действия шины заключается в следующем. При полной или частичной потере воздуха покрышка опирается об опорное кольцо. При этом шина удерживается на ободе благодаря особой форме посадочных канавок. Наиболее опасным является движение автомобиля на поворотах, при котором на боковины шины действуют растягивающие усилия. Сила растяжения Fz вызывает поворот борта шины вокруг его сердечника. В результате создается сила Fw, действующая во внешней зоне борта и прижимающая его к посадочной канавке.

Лекции по системам шин

Рис. Колесо с шиной «PAX»:
1 – шина; 2 – плоское металлическое кольцо; 3 – обод:
а – форма шины при полном давлении; б – форма шины при проколе

Лекции по системам шин

Рис. Состояние шины при проколе:
А – стандартная шина; Б – шина с несущими бортами; А1 – форма стандартной шины при полном давлении; А2 – форма стандартной шины при потере давления; Б1 – форма шины повышенной мобильности при полном давлении; Б2 – форма шины повышенной мобильности при потере давления; 1 – усиленная боковина

Водитель автомобиля, оборудованного безопасными шинами, может не заметить прокола, поэтому совместно с такими шинами должны устанавливаться системы контроля давления воздуха в шинах.

Диски колес, применяемые на легковых автомобилях, разделяются на стальные и легкосплавные. Стальные колеса изготавли­вают методом штамповки из листово­го металла с последующей сваркой со­ставляющих элементов. Достоинст­вами стальных колес являются сравни­тельно невысокая стоимость и хоро­шие эксплуатационные качества. К не­достаткам следует отнести большую массу колеса и несколько широкое поле допусков на изготовление, что требует тщательной балансировки. Легкосплавные колеса изготавливают методом литья или ковки. Материала­ми для колес являются сплавы на ос­нове алюминия, магния и титана, поэ­тому стоимость таких колес высокая. Колеса на основе магниевых сплавов требуют специального антикоррозион­ного покрытия. Легкосплавные колеса бывают очень разнообразные по кон­струкции, внешнему виду и дизайну.

Лекции по системам шин

Рис. Основные размеры диска колеса

Порядок выполнения работы

1.Изучить назначение и устройство колес и шин автомобилей

2.Рассмотреть и уметь объяснить следующие схемы:

2.1.Конструкцию колеса с разъемным и неразъемным ободом

2.2.Конструкцию камерной и бескамерной шины

3. Выписать основные параметры, характеризующие колеса и шины изучаемых автомобилей

3.3.Способы крепления запасного колеса

4.Выполнить практическую работу

5.Составить отчет о работе, дать ответ на контрольные вопросы

Источник

Лекция 2 системные и локальные шины 1

Лекция 2. Системные и локальные шины

Лекция 2. Системные и локальные шины 1

Общие положения

В вычислительной системе, состоящей из множества подсистем, необходим механизм для их взаимодействия. Эти подсистемы должны быстро и эффективно обмениваться данными. Например, процессор, с одной стороны, должен быть связан с памятью, с другой стороны, необходима связь процессора с устройствами ввода/вывода. Одним из простейших механизмов, позволяющих организовать взаимодействие различных подсистем, является единственная центральная шина, к которой подсоединяются все подсистемы. Доступ к такой шине разделяется между всеми подсистемами. Подобная организация имеет два основных преимущества:

Поскольку такая шина является единственным местом подсоединения для разных устройств, новые устройства могут быть легко добавлены, и одни и те же периферийные устройства можно даже применять в разных вычислительных системах, использующих однотипную шину. Стоимость такой организации получается достаточно низкой, поскольку для реализации множества путей передачи информации используется единственный набор линий шины, разделяемый множеством устройств.

Главным недостатком организации с единственной шиной является то, что шина создает узкое горло, ограничивая, возможно, максимальную пропускную способность ввода/вывода. Если весь поток ввода/вывода должен проходить через центральную шину, такое ограничение пропускной способности весьма реально. В коммерческих системах, где ввод/вывод осуществляется очень часто, а также в суперкомпьютерах, где необходимые скорости ввода/вывода очень высоки из-за высокой производительности процессора, одним из главных вопросов разработки является создание системы нескольких шин, способной удовлетворить все запросы.

Одна из причин больших трудностей, возникающих при разработке шин, заключается в том, что максимальная скорость шины главным образом лимитируется физическими факторами:

количеством подсоединяемых устройств.

Эти физические ограничения не позволяют произвольно ускорять шины. Требования быстродействия (малой задержки) системы ввода/вывода и высокой пропускной способности являются противоречивыми. В современных крупных системах используется целый комплекс взаимосвязанных шин, каждая из которых обеспечивает упрощение взаимодействия различных подсистем, высокую пропускную способность, избыточность (для увеличения отказоустойчивости) и эффективность.

Традиционно шины делятся:

на шины, обеспечивающие организацию связи процессора с памятью,

и шины ввода/вывода.

Шины ввода/вывода могут иметь большую протяженность, поддерживать подсоединение многих типов устройств, и обычно следуют одному из шинных стандартов.

Шины процессор-память, с другой стороны, сравнительно короткие, обычно высокоскоростные и соответствуют организации системы памяти для обеспечения максимальной пропускной способности канала память-процессор. На этапе разработки системы, для шины процессор-память заранее известны все типы и параметры устройств, которые должны соединяться между собой, в то время как разработчик шины ввода/вывода должен иметь дело с устройствами, различающимися по задержке и пропускной способности.

Как уже было отмечено, с целью снижения стоимости, некоторые компьютеры имеют единственную шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Персональные компьютеры, как правило, строятся на основе одной системной шины в стандартах ISA или PCI. Необходимость сохранения баланса производительности по мере роста быстродействия микропроцессоров привела к двухуровневой организации шин в персональных компьютерах на основе локальной шины. Локальной шиной называется шина, электрически выходящая непосредственно на контакты микропроцессора. Она обычно объединяет процессор, память, схемы буферизации для системной шины и ее контроллер, а также некоторые вспомогательные схемы. Типичными примерами локальных шин являются VL-Bus и PCI.

Разработка шины связана с реализацией ряда дополнительных возможностей (табл. 1).

Основные возможности шин

Общая разрядность шины

Отдельные линии адреса и данных

Мультиплексирование линий адреса и данных

Ширина (рязрядность) данных

Чем шире, тем быстрее (например, 32 бит)

Чем уже, тем дешевле (например, 8 бит)

Пересылка нескольких слов имеет меньшие накладные расходы

Пересылка одного слова дешевле

Главные устройства шины

Несколько (требуется арбитраж)

Одно (арбитраж не нужен)

Решение о выборе той или иной возможности зависит от целевых параметров стоимости и производительности. Первые три возможности являются очевидными:

раздельные линии адреса и данных,

более широкие (имеющие большую разрядность) шины данных,

режим групповых пересылок (пересылки нескольких слов)

Они дают увеличение производительности за счет увеличения стоимости.

В настоящее время используются два типа шин, отличающиеся способом коммутации:

шины с коммутацией цепей (circuit-switched bus),

шины с коммутацией пакетов (packet-switched bus).

Они получившие свои названия по аналогии со способами коммутации в сетях передачи данных.

Шина с коммутацией пакетов при наличии нескольких главных устройств шины обеспечивает значительно большую пропускную способность по сравнению с шиной с коммутацией цепей за счет разделения транзакции на две логические части: запроса шины и ответа. Такая методика получила название «;расщепления»; транзакций (split transaction). (В некоторых системах такая возможность называется шиной соединения/разъединения (connect/disconnect) или конвейерной шиной (pipelined bus). Транзакция чтения разбивается на транзакцию запроса чтения, которая содержит адрес, и транзакцию ответа памяти, которая содержит данные. Каждая транзакция теперь должна быть помечена (тегирована) соответствующим образом, чтобы ЦП и память могли сообщить что есть что.

Шина с коммутацией цепей не делает расщепления транзакций, любая транзакция на ней есть неделимая операция. Главное устройство запрашивает шину, после арбитража помещает на нее адрес и блокирует шину до окончания обслуживания запроса. Большая часть этого времени обслуживания при этом тратится не на выполнение операций на шине (например, на задержку выборки из памяти). Таким образом, в шинах с коммутацией цепей это время просто теряется. Расщепленные транзакции делают шину доступной для других главных устройств пока память читает слово по запрошенному адресу. Это, правда, также означает, что ЦП должен бороться за шину для посылки данных, а память должна бороться за шину, чтобы вернуть данные. Таким образом, шина с расщеплением транзакций имеет более высокую пропускную способность, но обычно она имеет и большую задержку, чем шина, которая захватывается на все время выполнения транзакции. Транзакция называется расщепленной, поскольку произвольное количество других пакетов или транзакций могут использовать шину между запросом и ответом.

Последний вопрос связан с выбором типа синхронизации и определяет, является ли шина синхронной или асинхронной. Если шина синхронная, то она включает сигналы синхронизации, которые передаются по линиям управления шины, и фиксированный протокол, определяющий расположение сигналов адреса и данных относительно сигналов синхронизации. Поскольку практически никакой дополнительной логики не требуется для того, чтобы решить, что делать в следующий момент времени, эти шины могут быть и быстрыми, и дешевыми. Однако они имеют два главных недостатка. Все на шине должно происходить с одной и той же частотой синхронизации, поэтому из-за проблемы перекоса синхросигналов, синхронные шины не могут быть длинными. Обычно шины процессор-память синхронные.

Асинхронная шина, с другой стороны, не тактируется. Вместо этого обычно используется старт-стопный режим передачи и протокол «;рукопожатия»; (handshaking) между источником и приемником данных на шине. Эта схема позволяет гораздо проще приспособить широкое разнообразие устройств и удлинить шину без беспокойства о перекосе сигналов синхронизации и о системе синхронизации. Если может использоваться синхронная шина, то она обычно быстрее, чем асинхронная, из-за отсутствия накладных расходов на синхронизацию шины для каждой транзакции. Выбор типа шины (синхронной или асинхронной) определяет не только пропускную способность, но также непосредственно влияет на емкость системы ввода/вывода в терминах физического расстояния и количества устройств, которые могут быть подсоединены к шине. Асинхронные шины по мере изменения технологии лучше масштабируются. Шины ввода/вывода обычно асинхронные.

Стандарты шин

Обычно количество и типы устройств ввода/вывода в вычислительных системах не фиксируются, что позволяет пользователю самому подобрать необходимую конфигурацию. Шина ввода/вывода компьютера может рассматриваться как шина расширения, обеспечивающая постепенное наращивание устройств ввода/вывода. Поэтому стандарты играют огромную роль, позволяя разработчикам компьютеров и устройств ввода/вывода работать независимо. Появление стандартов определяется разными обстоятельствами.

В табл. 2 представлены характеристики нескольких стандартных шин. Заметим, что строки этой таблицы, касающиеся пропускной способности, не указаны в виде одной цифры для шин процессор-память (VME, FutureBus, MultibusII). Размер пересылки, из-за разных накладных расходов шины, сильно влияет на пропускную способность. Поскольку подобные шины обычно обеспечивают связь с памятью, то пропускная способность шины зависит также от быстродействия памяти. Например, в идеальном случае при бесконечном размере пересылки и бесконечно быстрой памяти (время доступа 0 нсек) шина FutureBus на 240% быстрее шины VME, но при пересылке одиночных слов из 150-нсекундной памяти шина FutureBus только примерно на 20% быстрее, чем шина VME.

Источник

Видео

Лекция 281. Шина ISA

Лекция 281. Шина ISA

Лекция 1. СКАДА. Введение в АСУТП

Лекция 1. СКАДА.  Введение в АСУТП

Методология, русский мир и Кириенко – Петр Щедровицкий

Методология, русский мир и Кириенко – Петр Щедровицкий

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

Лапидус А.А. Схема распределительных устройств (РУ): 2СШ+ОСШ

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

лекция 403 CAN шина- введение

лекция 403  CAN шина- введение

Колёса и шины

Колёса и шины

Лекция 275. Микропроцессорная система с общей шиной

Лекция 275. Микропроцессорная система с общей шиной

АПС Л19. Шины

АПС Л19.  Шины

Система иммунитета. Тимус (лекция по гистологии)

Система иммунитета. Тимус (лекция по гистологии)
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.