Предел функции простым языком + видео обзор

Предел функции: основные понятия и определения

В этой статье мы расскажем, что из себя представляет предел функции. Сначала поясним общие моменты, которые очень важны для понимания сути этого явления.

Понятие предела

Если мы не можем определить ни конечное, ни бесконечное значение, это значит, что такого предела не существует. Примером этого случая может быть предел от синуса на бесконечности.

Что такое предел функции

В этом пункте мы объясним, как найти значение предела функции в точке и на бесконечности. Для этого нам нужно ввести основные определения и вспомнить, что такое числовые последовательности, а также их сходимость и расходимость.

При x → ∞ предел функции f ( x ) является бесконечным, если последовательность значений для любой бесконечно большой последовательности аргументов будет также бесконечно большой (положительной или отрицательной).

Решение

Предел функции простым языком

Далее мы запишем то же самое, но для бесконечно большой отрицательной последовательности.

Здесь тоже видно монотонное убывание к нулю, что подтверждает верность данного в условии равенства:

Предел функции простым языком

Ответ: Верность данного в условии равенства подтверждена.

Решение

Мы видим, что данная последовательность бесконечно положительна, значит, f ( x ) = lim x → + ∞ e 1 10 x = + ∞

Наглядно решение задачи показано на иллюстрации. Синими точками отмечена последовательность положительных значений, зелеными ­ – отрицательных.

Предел функции простым языком

Перейдем к методу вычисления предела функции в точке. Для этого нам нужно знать, как правильно определить односторонний предел. Это пригодится нам и для того, чтобы найти вертикальные асимптоты графика функции.

Теперь сформулируем, что такое предел функции справа.

Теперь мы разъясним данные определения, записав решение конкретной задачи.

Решение

Значения функции в этой последовательности будут выглядеть так:

Предел функции простым языком

Чтобы более глубоко изучить теорию пределов, советуем вам прочесть статью о непрерывности функции в точке и основных видах точек разрыва.

Источник

Пределы

Пределы — одни из самых трудных сущностей в математике для понимания. Сложно объяснить просто, что такое предел, поэтому чаще всего этого никто и не делает.

И тем более, мало к то из преподавателей может привести пример из жизни, когда пределы все-таки могут пригодится. Но мы попытаемся объяснить так, чтобы было и понятно и несложно и по сути. Как обычно «на пальцах».

Предел функции простым языком

Что такое пределы простыми словами

Наверное самое наглядное, что можно вспомнить из истории, это знаменитый парадокс Зенона «Ахиллес и черепаха». Зенон был философом, а не математиком, поэтому мог вполне свободно упражняется в остроумии не заботясь о доказательствах.

Ахиллес и черепаха бегут на перегонки. Черепаха начинает первой, человек догоняет. Ахиллес бежит быстрее, но когда он пробегает 100 шагов, черепаха все рано проползает один. Еще 100 шагов и еще один. Таким образом Ахиллес приближается к черепахе но и она чуть-чуть отдаляется от него. Зенон делает вывод, что Ахиллес будет бесконечно к ней приближаться, но никогда не догонит черепаху!

В этой истории важно не то, что на самом деле она не реальна, а ее «математический смысл». Человек приближается к черепахе но никогда ее не настигает. То есть некий предел (черепаха) к которому стремится Ахиллес.

Предел функции простым языком

Говоря простым языком предел это такое значение, которое нельзя достичь, но можно бесконечно близко к нему приблизится.

То есть, в пределе определенного промежутка времени Ахиллес действительно не догонит черепаху (времени не хватит), но приблизится к ней на бесконечно малое расстояние.

Пределы в математике

Стоит сразу сказать, что определение пределов больше чем одно, потому, что они бывают разные. Есть придел последовательности, а есть предел функции.

Давайте разделим число 10 пополам:

10/2=5, и еще раз, 5/2=2,5 и еще…

Это последовательность n/2: 10…2,5…1,25…

Предел функции простым языком

Если делать это 20 раз получится вот такое значение: 0,000019

А если сделать 100 раз, то вот такое: 0,000000000000000000000000000016

Если делить пополам бесконечно, результат будет уменьшатся, в реальной жизни, это будет уже фактически ноль, но в математике, все еще не ноль… Предел этой последовательности будет стремиться к нолю.

Если взять другу последовательность, например n+1. 2…3…4…5… и снова устремимся в бесконечность. Предел этого множества тоже будет стремится к бесконечности.

Еще один пример

Бросаем монетку. Может выпасть «орел», а может и «решка». Теория вероятности утверждает, что шансы всегда 50/50, то есть вероятность «орла» — 1/2=0,5.

Каждый раз, значение реально вероятности, приближается к расчетным 0,5. Чтобы получить вероятность ровно 0,5 нужно подбросить монетку бесконечное количество раз.

То есть, при условии, что количество бросков стремится к бесконечности предел предел будет равен 0,5.

Это именно та бесконечность из матанализа о которой было сказано в статьях об интегралах и делении на ноль. Это не какое-то определенное число — это понятие.

Предел последовательности

Предел последовательности — это пространство которое содержит все все элементы последовательности начиная с какого-то значения. А простыми словами, предел последовательности, простыми словами, это такая «область» куда попадают все значения после определенного порога (в нашем случае – А). На изображении ниже она условно показана синей полоской.

Предел функции простым языком

ε — это произвольное положительное число.

Можно заметить, что при продолжении вверх последовательности ее значения все равно будут оставаться в пределах «синей полосы».

Можно сказать и так:

Предел числовой последовательности, это число (s на графике) в окрестности которого попадает бесконечно много значений. При этом вне предела, количество значений явно конечно. Чтобы было еще понятнее: предел последовательности это значение (точка А) выше которого все будет попадать в область не больше s+ε и s-ε. Бесконечное количество таких значений будет «лежать» внутри синей полоски.

Математическим языком можно записать так: s-ε Предел функции простыми словами объяснить также просто. Предел в какой-то произвольной точке — это величина к которой значение функции приближается. Например, f(x)=2x, а х→0 (икс стремится к нулю).

В этом случае предел функции будет равен lim 2x=0. Или в случае если х→2 то предел равен lim 2x=4. Пока все просто. Вот только зачем вычислять пределы, если можно просто выбросить «lim» и расчеты останутся те ми же?….

Зачем нужны пределы

Пределы как раз и нужны тогда, когда мы имеем дело с бесконечностью. Например, бесконечно большими или бесконечно малыми значениями.

Непонятно, что такое «бесконечно большое» или «бесконечно долго», это не какое-то определенное число. С бесконечно малыми значениями та же ситуация, это не «ноль» но как-то очень близко к нему. Тут и выручают пределы.

Предел функции простым языком

В точке х=2 — пусто. Потому, что получается 0/0, то есть неопределенность. Но стоит вместо 2 подставить 1,9999999999(9) или 2,000000001(1). Значения бесконечно близкие к 2, но не «два», как график превратится в прямую.

В этом случае речь идет о пределе функции при «икс» стремящемуся к двум, функция стремится к 4.

Такой своеобразный «трюк» в расчетах с заменой знака равенства на стрелочку.

Нет, не совсем. Когда речь идет о пределах, имеется в виду процесс, не важно функция это или множество, но предел описывает процесс в динамике. Тогда как знак «равно» означает статическое состояние.

x=1 и x→1, это совсем не одно и то же.

Примеры из жизни

Зачем все это нужно где применяется пределы в реальных расчетах?

Простое объяснение пределов невозможно, если не привести наглядный пример. Но только где его взять? Существует ли какой-то физический смысл пределов? Не точный аналог но что-то похожее есть.

Можно провести простой эксперимент, взять, например, спичку. Или что-угодно, чего не жалко. Начинаем пытаться сломать спичку, сначала одно усилие, потом чуть больше и еще больше. В один из моментов спичка треснет пополам.

Поздравляем, вы достигли предела прочности. Можно повторить эксперимент с другими спичками и установить, значение при котором спичка ломается.

Что тут общего с пределами из математики, кроме названия.

Есть множество значений силы до предела прочности и оно ограничено, и множество значений после предела прочности, их неограниченное множество. Ведь спичка уже сломана, любое усилие выше предела прочности будет ломать новую и новую спичку. Точно так же как и с пределом функции или множества.

Все, что лежит за пределом, уже не имеет практического значения — спичка не устоит.

Еще один пример, это «практический потолок» летательного аппарата. Это максимальная высота на которую может «взобраться» самолет, чтобы подняться выше будет уже не хватать подъемной силы. Хотя на есть еще и понятие «динамический потолок» — это высота на которую можно подняться хорошенько разогнавшись. Но выскочив на эту высоту через некоторое время самолет все равно опустится на свой «потолок».

Посмотрите на картинку ниже, это наглядный пример такого явления как резонанс.

Предел функции простым языком

Колебание моста из-за резонанса

Мост так раскачивается из-за того, что собственная частота колебания совпадает с той частотой с которой его раскачивает ветер, амплитуда колебаний постоянно возрастает и мост разрушается. В этом случае амплитуда стремится к бесконечности, так как в знаменателе формулы находится выражение w0-w (собственная частота колебаний минус вынужденная частота), а так как обе w равны, получается то самое деление на ноль, а значит амплитуда → ∞.

Самое понятное объяснений пределов в реальности, с которым может столкнуться каждый — это сложные банковские проценты по кредиту. И если вы не умеете рассчитывать сложны проценты, не берите кредит. Для тех, кто силен в матанализе совет будет не лишним.

Также может понадобится рассчитать предельную стоимость товара, зная зависимость (функцию) цены от объема продаж или предельный объем производства или много еще чего.

Самый наглядный пример, возможно, это предел в маркетинге. Вот зависимость стоимости клика от количества кликов в контекстной рекламе.

Предел функции простым языком

И все же в повседневной жизни обыватель редко встречается с таким понятием как предел функции или последовательности. Поэтому и так сложно понять и принять абстрактные математические формулировки. Но если постараться, математика может открыть новые грани реальности, по крайней мере, все это уже не будет казаться таким скучным и непонятным.

Источник

Пределы функций. Примеры решений

Теория пределов – это один из разделов математического анализа. Вопрос решения пределов является достаточно обширным, поскольку существуют десятки приемов решений пределов различных видов. Существуют десятки нюансов и хитростей, позволяющих решить тот или иной предел. Тем не менее, мы все-таки попробуем разобраться в основных типах пределов, которые наиболее часто встречаются на практике.

Начнем с самого понятия предела. Но сначала краткая историческая справка. Жил-был в 19 веке француз Огюстен Луи Коши, который дал строгие определения многим понятиям матана и заложил его основы. Надо сказать, этот уважаемый математик снился, снится и будет сниться в кошмарных снах всем студентам физико-математических факультетов, так как доказал огромное количество теорем математического анализа, причём одна теорема убойнее другой. В этой связи мы пока не будем рассматривать определение предела по Коши, а попытаемся сделать две вещи:

1. Понять, что такое предел.
2. Научиться решать основные типы пределов.

Прошу прощения за некоторую ненаучность объяснений, важно чтобы материал был понятен даже чайнику, что, собственно, и является задачей проекта.

Итак, что же такое предел?

А сразу пример, чего бабушку лохматить….

Предел функции простым языком

Любой предел состоит из трех частей:

1) Всем известного значка предела Предел функции простым языком.
2) Записи под значком предела, в данном случае Предел функции простым языком. Запись читается «икс стремится к единице». Чаще всего – именно Предел функции простым языком, хотя вместо «икса» на практике встречаются и другие переменные. В практических заданиях на месте единицы может находиться совершенно любое число, а также бесконечность (Предел функции простым языком).
3) Функции под знаком предела, в данном случае Предел функции простым языком.

Сама запись Предел функции простым языкомчитается так: «предел функции Предел функции простым языкомпри икс стремящемся к единице».

Разберем следующий важный вопрос – а что значит выражение «икс стремится к единице»? И что вообще такое «стремится»?
Понятие предела – это понятие, если так можно сказать, динамическое. Построим последовательность: сначала Предел функции простым языком, затем Предел функции простым языком, Предел функции простым языком, …, Предел функции простым языком, ….
То есть выражение «икс стремится к единице» следует понимать так – «икс» последовательно принимает значения, которые бесконечно близко приближаются к единице и практически с ней совпадают.

Как решить вышерассмотренный пример? Исходя из вышесказанного, нужно просто подставить единицу в функцию, стоящую под знаком предела:

Предел функции простым языком

Итак, первое правило: Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

Мы рассмотрели простейший предел, но и такие встречаются на практике, причем, не так уж редко!

Пример с бесконечностью:

Предел функции простым языком

Разбираемся, что такое Предел функции простым языком? Это тот случай, когда Предел функции простым языкомнеограниченно возрастает, то есть: сначала Предел функции простым языком, потом Предел функции простым языком, потом Предел функции простым языком, затем Предел функции простым языкоми так далее до бесконечности.

А что в это время происходит с функцией Предел функции простым языком?
Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, …

Итак: если Предел функции простым языком, то функция Предел функции простым языкомстремится к минус бесконечности:

Предел функции простым языком

Грубо говоря, согласно нашему первому правилу, мы вместо «икса» подставляем в функцию Предел функции простым языкомбесконечность и получаем ответ.

Еще один пример с бесконечностью:

Предел функции простым языком

Опять начинаем увеличивать Предел функции простым языкомдо бесконечности и смотрим на поведение функции:
Предел функции простым языком

Вывод: при Предел функции простым языкомфункция Предел функции простым языкомнеограниченно возрастает:
Предел функции простым языком

И еще серия примеров:

Пожалуйста, попытайтесь самостоятельно мысленно проанализировать нижеследующее и запомните простейшие виды пределов:

Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком, Предел функции простым языком
Если где-нибудь есть сомнения, то можете взять в руки калькулятор и немного потренироваться.
В том случае, если Предел функции простым языком, попробуйте построить последовательность Предел функции простым языком, Предел функции простым языком, Предел функции простым языком. Если Предел функции простым языком, то Предел функции простым языком, Предел функции простым языком, Предел функции простым языком.

! Примечание: строго говоря, такой подход с построением последовательностей из нескольких чисел некорректен, но для понимания простейших примеров вполне подойдет.

Также обратите внимание на следующую вещь. Даже если дан предел с большим числом вверху, да хоть с миллионом: Предел функции простым языком, то все равно Предел функции простым языком, так как рано или поздно «икс» начнёт принимать такие гигантские значения, что миллион по сравнению с ними будет самым настоящим микробом.

Что нужно запомнить и понять из вышесказанного?

1) Когда дан любой предел, сначала просто пытаемся подставить число в функцию.

2) Вы должны понимать и сразу решать простейшие пределы, такие как Предел функции простым языком, Предел функции простым языком, Предел функции простым языкоми т.д.

Более того, у предела есть очень хороший геометрический смысл. Для лучшего понимания темы рекомендую ознакомиться с методическим материалом Графики и свойства элементарных функций. После прочтения этой статьи вы не только окончательно поймете, что такое предел, но и познакомитесь с интересными случаями, когда предела функции вообще не существует!

На практике, к сожалению, подарков немного. А поэтому переходим к рассмотрению более сложных пределов. Кстати, по этой теме есть интенсивный курс в pdf-формате, который особенно полезен, если у Вас ОЧЕНЬ мало времени на подготовку. Но материалы сайта, разумеется, не хуже:

Пределы с неопределенностью вида Предел функции простым языкоми метод их решения

Сейчас мы рассмотрим группу пределов, когда Предел функции простым языком, а функция представляет собой дробь, в числителе и знаменателе которой находятся многочлены

Вычислить предел Предел функции простым языком

Согласно нашему правилу попытаемся подставить бесконечность в функцию. Что у нас получается вверху? Бесконечность. А что получается внизу? Тоже бесконечность. Таким образом, у нас есть так называемая неопределенность вида Предел функции простым языком. Можно было бы подумать, что Предел функции простым языком, и ответ готов, но в общем случае это вовсе не так, и нужно применить некоторый прием решения, который мы сейчас и рассмотрим.

Как решать пределы данного типа?

Сначала мы смотрим на числитель и находим Предел функции простым языкомв старшей степени:
Предел функции простым языком
Старшая степень в числителе равна двум.

Теперь смотрим на знаменатель и тоже находим Предел функции простым языкомв старшей степени:
Предел функции простым языком
Старшая степень знаменателя равна двум.

Затем мы выбираем самую старшую степень числителя и знаменателя: в данном примере они совпадают и равны двойке.

Итак, метод решения следующий: для того, чтобы раскрыть неопределенность Предел функции простым языкомнеобходимо разделить числитель и знаменатель на Предел функции простым языкомв старшей степени.

Предел функции простым языком
Разделим числитель и знаменатель на Предел функции простым языком
Предел функции простым языком

Вот оно как, ответ Предел функции простым языком, а вовсе не бесконечность.

Что принципиально важно в оформлении решения?

Во-первых, указываем неопределенность, если она есть.

Во-вторых, желательно прервать решение для промежуточных объяснений. Я обычно использую знак Предел функции простым языком, он не несет никакого математического смысла, а обозначает, что решение прервано для промежуточного объяснения.

В-третьих, в пределе желательно помечать, что и куда стремится. Когда работа оформляется от руки, удобнее это сделать так:
Предел функции простым языком
Для пометок лучше использовать простой карандаш.

Конечно, можно ничего этого не делать, но тогда, возможно, преподаватель отметит недочеты в решении либо начнет задавать дополнительные вопросы по заданию. А оно Вам надо?

Найти предел Предел функции простым языком
Снова в числителе и знаменателе находим Предел функции простым языкомв старшей степени:
Предел функции простым языком
Максимальная степень в числителе: 3
Максимальная степень в знаменателе: 4
Выбираем наибольшее значение, в данном случае четверку.
Согласно нашему алгоритму, для раскрытия неопределенности Предел функции простым языкомделим числитель и знаменатель на Предел функции простым языком.
Полное оформление задания может выглядеть так:

Предел функции простым языком

Разделим числитель и знаменатель на Предел функции простым языком

Предел функции простым языком

Найти предел Предел функции простым языком
Максимальная степень «икса» в числителе: 2
Максимальная степень «икса» в знаменателе: 1 ( Предел функции простым языкомможно записать как Предел функции простым языком)
Для раскрытия неопределенности Предел функции простым языкомнеобходимо разделить числитель и знаменатель на Предел функции простым языком. Чистовой вариант решения может выглядеть так:

Предел функции простым языком

Разделим числитель и знаменатель на Предел функции простым языком

Предел функции простым языком

Под записью Предел функции простым языкомподразумевается не деление на ноль (делить на ноль нельзя), а деление на бесконечно малое число.

Таким образом, при раскрытии неопределенности вида Предел функции простым языкому нас может получиться конечное число, ноль или бесконечность.

Пределы с неопределенностью вида Предел функции простым языкоми метод их решения

Предвосхищаю вопрос от чайников: «Почему здесь деление на ноль? На ноль же делить нельзя!». Смысл записи 0:0 будет понятен позже, после ознакомления с четвёртым уроком о бесконечно малых функциях. А пока всем начинающим изучать математический анализ предлагаю читать далее.

Следующая группа пределов чем-то похожа на только что рассмотренные пределы: в числителе и знаменателе находятся многочлены, но «икс» стремится уже не к бесконечности, а к конечному числу.

Общее правило: если в числителе и знаменателе находятся многочлены, и имеется неопределенности вида Предел функции простым языком, то для ее раскрытия нужно разложить числитель и знаменатель на множители.

Для этого чаще всего нужно решить квадратное уравнение и (или) использовать формулы сокращенного умножения. Если данные вещи позабылись, тогда посетите страницу Математические формулы и таблицы и ознакомьтесь с методическим материалом Горячие формулы школьного курса математики. Кстати его лучше всего распечатать, требуется очень часто, да и информация с бумаги усваивается лучше.

Итак, решаем наш предел
Предел функции простым языком

Разложим числитель и знаменатель на множители

Для того чтобы разложить числитель на множители, нужно решить квадратное уравнение:
Предел функции простым языком
Сначала находим дискриминант:
Предел функции простым языком
И квадратный корень из него: Предел функции простым языком.

В случае если дискриминант большой, например 361, используем калькулятор, функция извлечения квадратного корня есть на самом простом калькуляторе.

! Если корень не извлекается нацело (получается дробное число с запятой), очень вероятно, что дискриминант вычислен неверно либо в задании опечатка.

Далее находим корни:
Предел функции простым языком
Предел функции простым языком

Таким образом:
Предел функции простым языком

Всё. Числитель на множители разложен.

Знаменатель. Знаменатель Предел функции простым языкомуже является простейшим множителем, и упростить его никак нельзя.

Предел функции простым языком

Очевидно, что можно сократить на Предел функции простым языком:

Предел функции простым языком

Предел функции простым языком

Естественно, в контрольной работе, на зачете, экзамене так подробно решение никогда не расписывают. В чистовом варианте оформление должно выглядеть примерно так:

Предел функции простым языком

Разложим числитель на множители.
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком

Предел функции простым языком

Вычислить предел Предел функции простым языком

Сначала «чистовой» вариант решения

Предел функции простым языком

Разложим числитель и знаменатель на множители.

Числитель: Предел функции простым языком
Знаменатель:
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком, Предел функции простым языком
Предел функции простым языком

Предел функции простым языком

Что важного в данном примере?
Во-первых, Вы должны хорошо понимать, как раскрыт числитель, сначала мы вынесли за скобку 2, а затем использовали формулу разности квадратов. Уж эту-то формулу нужно знать и видеть.

Рекомендация: Если в пределе (практически любого типа) можно вынести число за скобку, то всегда это делаем.
Более того, такие числа целесообразно выносить за значок предела. Зачем? Да просто чтобы они не мешались под ногами. Главное, потом эти числа не потерять по ходу решения.

Обратите внимание, что на заключительном этапе решения я вынес за значок предела двойку, а затем – минус.

Вообще, я заметил, что чаще всего в нахождении пределов данного типа приходится решать два квадратных уравнения, то есть и в числителе и в знаменателе находятся квадратные трехчлены.

Метод умножения числителя и знаменателя на сопряженное выражение

Продолжаем рассматривать неопределенность вида Предел функции простым языком

Следующий тип пределов похож на предыдущий тип. Единственное, помимо многочленов, у нас добавятся корни.

Найти предел Предел функции простым языком

Сначала пробуем подставить 3 в выражение под знаком предела
Еще раз повторяю – это первое, что нужно выполнять для ЛЮБОГО предела. Данное действие обычно проводится мысленно или на черновике.

Предел функции простым языком

Получена неопределенность вида Предел функции простым языком, которую нужно устранять.
Предел функции простым языком

Как Вы, наверное, заметили, у нас в числителе находится разность корней. А от корней в математике принято, по возможности, избавляться. Зачем? А без них жизнь проще.

Когда в числителе (знаменателе) находится разность корней (или корень минус какое-нибудь число), то для раскрытия неопределенности Предел функции простым языкомиспользуют метод умножения числителя и знаменателя на сопряженное выражение.

Вспоминаем нашу нетленную формулу разности квадратов: Предел функции простым языком
И смотрим на наш предел: Предел функции простым языком
Что можно сказать? Предел функции простым языкому нас в числителе уже есть. Теперь для применения формулы осталось организовать Предел функции простым языком(которое и называется сопряженным выражением).

Умножаем числитель на сопряженное выражение:

Предел функции простым языком

Обратите внимание, что под корнями при этой операции мы ничего не трогаем.

Хорошо, Предел функции простым языкоммы организовали, но выражение-то под знаком предела изменилось! А для того, чтобы оно не менялось, нужно его разделить на то же самое, т.е. на Предел функции простым языком:

Предел функции простым языком

То есть, мы умножили числитель и знаменатель на сопряженное выражение.
В известной степени, это искусственный прием.

Умножили. Теперь самое время применить вверху формулу Предел функции простым языком:

Предел функции простым языком

Неопределенность Предел функции простым языкомне пропала (попробуйте подставить тройку), да и корни тоже не исчезли. Но с суммой корней всё значительно проще, ее можно превратить в постоянное число. Как это сделать? Да просто подставить тройку под корни:

Предел функции простым языком

Число, как уже отмечалось ранее, лучше вынести за значок предела.

Теперь осталось разложить числитель и знаменатель на множители и сократить «виновников» неопределённости, ну а предел константы – равен самой константе:
Предел функции простым языком

Как должно выглядеть решение данного примера в чистовом варианте?
Примерно так:

Предел функции простым языком

Умножим числитель и знаменатель на сопряженное выражение.

Предел функции простым языком

Найти предел Предел функции простым языком

Сначала попробуйте решить его самостоятельно.

Окончательное решение примера может выглядеть так:

Предел функции простым языком

Разложим числитель на множители:
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком
Предел функции простым языком

Умножим числитель и знаменатель на сопряженное выражение

Предел функции простым языком

Спасибо за внимание.

Помимо рассмотренных типов пределов на практике часто встречаются так называемые Замечательные пределы. После освоения двух базовых уроков, рекомендую изучить статью Методы решения пределов, материалы которой позволят выйти на «твёрдую четвёрку»!

Автор: Емелин Александр

(Переход на главную страницу)

Предел функции простым языком «Всё сдал!» — онлайн-сервис помощи студентам

Источник

Видео

Пределы функций для чайников. Свойства пределов. Примеры решения

Пределы функций для чайников. Свойства пределов. Примеры решения

ПРЕДЕЛ ФУНКЦИИ. Артур Шарифов

ПРЕДЕЛ ФУНКЦИИ. Артур Шарифов

Матан. Пределы для успешной сдачи зачёта | TutorOnline Математика

Матан. Пределы для успешной сдачи зачёта | TutorOnline Математика

Что такое ПРЕДЕЛЫ. Математика на QWERTY

Что такое ПРЕДЕЛЫ. Математика на QWERTY

Математика без Ху{a59d68d9e85770d26d7f03ef1e17421f46fa783a9a8ee536de468ee46886eb77}!ни. Пределы, часть1. Неопределенность, раскрытие неопределенностей.

Математика без Ху{a59d68d9e85770d26d7f03ef1e17421f46fa783a9a8ee536de468ee46886eb77}!ни. Пределы, часть1.  Неопределенность, раскрытие неопределенностей.

10 класс, 39 урок, Предел функции

10 класс, 39 урок, Предел функции

ПРЕДЕЛ ФУНКЦИИ решение пределов математика

ПРЕДЕЛ ФУНКЦИИ решение пределов математика

27. Вычисление предела функции №1. Примеры 1-4

27. Вычисление предела функции №1. Примеры 1-4

✓ Предел функции. Определение предела функции "по Коши" и "по Гейне" | матан #014 | Борис Трушин

✓ Предел функции. Определение предела функции "по Коши" и "по Гейне" | матан #014 | Борис Трушин

Предел функции в точке. 10 класс.

Предел функции в точке. 10 класс.
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.