Виды системных шин компьютера + видео обзор

Шины компьютера

Основу любого персонального компьютера составляет материнская плата и процессор. От них зависит производительность всей системы. На материнской плате для каждого устройства – клавиатуры, дисководов и т. д. имеется управляющая электронная схема – адаптер, или контроллер. Некоторые контроллеры могут управлять сразу несколькими устройствами.

Виды системных шин компьютера

Все контроллеры компьютера взаимодействуют с процессором и оперативной памятью через системную магистраль передачи данных, которая называется также системной шиной. Кроме системной шины на современных материнских платах имеется несколько шин и соответствующих им разъемов для подключения устройств:

Существует три основных показателя работы шины компьютера: тактовая частота, разрядность, скорость передачи данных или пропускная способность.

Работа любого компьютера зависит от тактовой частоты, определяемой кварцевым генератором, который представляет собой оловянный контейнер с помещенным в нем кристаллом кварца. Под воздействием электрического напряжения в кристалле возникают электрические колебания. Частота этих колебаний и называется тактовой частотой. Все изменения логических сигналов в любой микросхеме компьютера происходит через определенные интервалы времени, называемыми тактами. Таким образом, наименьшей единицей измерения времени для большинства логических устройств компьютера есть период тактовой частоты. На каждую операцию требуется минимум один такт, хотя некоторые современные устройства успевают выполнить несколько операций за один такт. Тактовая частота компьютера измеряется в мегагерцах (МГц или ГГц). Существуют так называемые пустые такты (циклы ожидания), когда устройство находится в процессе ожидания ответа от какого-либо другого устройства. Так организована работа оперативной памяти и процессора компьютера, тактовая частота которого значительно выше тактовой частоты оперативной памяти.

Для передачи электрических сигналов шины используют множество каналов. Если используются 32 канала, то шины считаются 32-разрядными, если 64 канала – то шины 64-разрядные. В действительности шины любой разрядности имеют большее количество каналов. Дополнительные каналы предназначены для передачи специфической информации.

Каждая шина компьютера отличается от простого проводника тем, что имеет три типа линий: линии данных, линии адреса, линии управления.

По шине данных происходит обмен между центральным процессором, установленными в слоты картами расширения и оперативной памятью компьютера.

Процесс обмена данными возможен лишь в том случае, когда известен отправитель и получатель этих данных. Каждый компонент персонального компьютера и каждая ячейка оперативной памяти имеют свой адрес и входят в общее адресное пространство. Для адресации к какому-либо устройству служит шина адреса, по которой передается уникальный адрес устройства. Максимальный объем оперативной памяти зависит от разрядности адресной шины компьютера (числа линий) и равен 2 в степени n, где n – число линий шины адреса. Например, компьютеры с процессором 80486 и выше имеют 32-разрядную шину адреса, с помощью которой можно адресовать 4 Гб памяти.

Для успешной передачи данных по шине недостаточно установить их на шине данных и задать адрес на шине адреса. Необходим еще ряд служебных сигналов, которые передаются по шине управления компьютера.

Быстродействие каждой шины компьютера характеризуется ее пропускной способностью, максимально возможному объему информации, передаваемому по шине в единицу времени, и измеряется в Мбайт/с или Гбайт/c. Пропускная способность шины определяется произведением разрядности линии данных и тактовой частоты. Чем выше пропускная способность, тем выше производительность всей системы.

В действительности на пропускную способность шины компьютера влияет множество всевозможных факторов: неэффективная проводимость материалов, недостатки конструкции и сборки и многое другое. Разность между теоретической скоростью передачи данных и практической может составлять до 25 %.

Источник

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Новости Утемуратов теннис. Собственный капитал банка.

Системные платы

Типы, назначение и функционирование шин

Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.

Виды системных шин компьютера

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.

Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.

Виды системных шин компьютера

Виды системных шин компьютера

Виды системных шин компьютера

Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.

Источник

Шина (компьютеры)

Виды системных шин компьютера

Ранние компьютерные шины представляли собой параллельные электрические шины с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии. В случае хабы.

Содержание

История

Первое поколение

Ранние компьютерные шины были группой проводников, подключающей компьютерную память и периферию к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя, компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.

DEC отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением и критики предсказывали ему провал.

Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair с шиной S-100 (англ.), заканчивая IBM PC в 1980‑х.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала. Увеличение скорости процессора было не простым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины «второго поколения», например NuBus решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две «части», процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила ускорять скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности шины данных, с 8-ми битных шин первого поколения до 16 или 32-х битных шин во втором поколении. Также появилась программная настройка устройств для упрощения подключения новых устройств, ныне стандартизованная как Plug-n-play.

Однако новые шины, так же как и предыдущее поколение, требовали одинаковых скоростей от устройств на одной шине. Процессор и память теперь были изолированы на собственной шине и их скорость росла быстрее, чем скорость переферийной шины. В результате, шины были слишком медленны для новых систем и машины страдали от нехватки данных. Один из примеров данной проблемы: видеокарты быстро совершенствовались, и им не хватало пропускной способности даже новых шин (PCI). Компьютеры стали включать в себя (AGP) только для работы с видеоадаптерами. В 2004 году AGP снова стало недостаточно быстрым для мощных видеокарт и AGP стал замещаться новой шиной PCI Express

Увеличивающееся число внешних устройств стало применять собственные шины. Когда были изобретены приводы дисков, они присоединялись к машине при помощи карты, подключаемой к шине. Из-за этого компьютеры имели много слотов расширения. Но в 1980‑х и 1990‑х были изобретены новые шины IDE решившие эту проблему и оставив большую часть разъёмов расширения в новых системах пустыми. В наше время типичная машина поддерживает около пяти различных шин.

Шины стали разделять на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. IDE является внешней шиной по своему предназначению, но почти всегда используется внутри компьютера.

Третье поколение

Современные интегральные схемы часто разрабатываются из заранее созданных частей, так называемых «intellectual property» или IP. Разработаны шины (например Wishbone) для более простой интеграции различных частей интегральных схем.

Примеры внутренних компьютерных шин

Параллельные

Последовательные

Примеры внешних компьютерных шин

Проприетарные

Примеры универсальных компьютерных шин

См. также

Внешние ссылки

Смотреть что такое «Шина (компьютеры)» в других словарях:

Шина расширения — Шина расширения компьютерная шина, которая используется на системной карте компьютеров или промышленных контроллеров, для добавления устройств (плат) в компьютер. Есть несколько видов: Персональные компьютеры ISA 8 и 16 разрядная,… … Википедия

Шина VME — шина, предназначенная для объединения устройств, работающих в режиме реального времени. Шина VME ориентирована на компьютеры, работающие под управлением операционной системы UNIX. По английски: VME bus См. также: Шины Обработка данных в реальном… … Финансовый словарь

Шина (компьютер) — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16). Ниже обычный 32 битный разъем шины PCI. У этого термина существуют и другие значения, см. Шина. Компьютерная шина (от … Википедия

Шина (топология компьютерной сети) — У этого термина существуют и другие значения, см. Шина (значения). Топология типа общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы,… … Википедия

Шина (компьютерные сети) — Топология типа шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. Содержание 1 Работа в сети … Википедия

Шина (автомобиль) — Эта статья об автомобильных пневматических шинах; для прочих значений, смотрите шина. Колесо экскаватора Автомобильная шина один из наиболее важных элементов, представляющий собой упругую оболочку, расположенную на ободе колеса. Шина… … Википедия

Шина автомобиля — Эта статья об автомобильных пневматических шинах; для прочих значений, смотрите шина. Колесо экскаватора Автомобильная шина один из наиболее важных элементов, представляющий собой упругую оболочку, расположенную на ободе колеса. Шина… … Википедия

Шина (значения) — Шина (нем. Schiene): Содержание 1 Этноним 2 В науке и технике 3 В искусстве … Википедия

Компьютерная шина — Разъёмы шины PCI Express (сверху вниз: x4, x16, x1 и x16), по сравнению с обычным 32 битным разъемом шины Компьютерная шина (от англ. computer bus, bidirectional universal switch двунаправленный универсальный коммутатор) в архитектуре компьютера… … Википедия

Автомобильная шина — Эта статья об автомобильных пневматических шинах; для прочих значений, смотрите шина … Википедия

Источник

Основные шины компьютера

Компьютер состоит из множества различных компонентов, это центральный процессор, память, жесткий диск, а также огромное количество дополнительных и внешних устройств, таких как экран, мышка клавиатура, подключаемые флешки и так далее. Всем этим должен управлять процессор, передавать и получать данные, отправлять сигналы, изменять состояние.

Что такое шина компьютера

По способу передачи данных шины делятся на последовательные и параллельные. Последовательные шины передают данные по одному проводнику, один бит за один раз, в параллельных шинах передача данных разделена между несколькими проводниками и поэтому можно передать большее количество данных.

Виды системных шин

Все шины компьютера можно разделить за их предназначением на несколько типов. Вот они:

Также к шинам ввода/вывода подключается шина расширений. Именно к этим шинам подключаются такие компоненты компьютера, как сетевая карта, видеокарта, звуковая карта, жесткий диск и другие и их мы более подробно рассмотрим в этой статье.

Вот наиболее распространенные типы шин в компьютере для расширений:

А теперь давайте более подробно разберем все эти шины персональных компьютеров.

Шина ISA

Виды системных шин компьютера

Раньше это был наиболее распространенный тип шины расширения. Он был разработан компанией IBM для использования в компьютере IBM PC-XT. Эта шина имела разрядность 8 бит. Это значит что можно было передавать 8 бит или один байт за один раз. Шина работала с тактовой частотой 4,77 МГц.

Для процессора 80286 на базе IBM PC-AT была сделана модификация конструкции шины, и теперь она могла передавать 16 бит данных за раз. Иногда 16 битную версию шины ISA называют AT.

Шина MCA

Виды системных шин компьютера

Компания IBM разработала эту шину в качестве замены для ISA, для компьютера PS/2, который вышел в 1987 году. Шина получила еще больше усовершенствований по сравнению с ISA. Например, была увеличена частота до 10 МГц, а это привело к увеличению скорости, а также шина могла передавать 16 или 32 бит данных за раз.

Также была добавлена технология Bus Mastering. На плате каждого расширения помещался мини-процессор, эти процессоры контролировали большую часть процессов передачи данных освобождая ресурсы основного процессора.

Одним из преимуществ этой шины было то, что подключаемые устройства имели свое программное обеспечение, а это значит что требовалось минимальное вмешательство пользователя для настройки. Шина MCA уже не поддерживала карты ISA и IBM решила брать деньги от других производителей за использование этой технологии, это сделало ее непопулярной с сейчас она нигде не используется.

Шина EISA

Виды системных шин компьютера

Эта шина была разработана группой производителей в качестве альтернативы для MCA. Шина была приспособлена для передачи данных по 32 битному каналу с возможностью доступа к 4 Гб памяти. Подобно MCA для каждой карты использовался микропроцессор, и была возможность установить драйвера с помощью диска. Но шина все еще работала на частоте 8 МГц для поддержки карт ISA.

Слоты EISA в два раза глубже чем ISA, если вставляется карта ISA, то она использует только верхний ряд разъемов, а EISA использует все разъемы. Карты EISA были дорогими и использовались обычно на серверах.

Шина VESA

Виды системных шин компьютера

Шина VESA была разработана для стандартизации способов передачи видеосигнала и решить проблему попыток каждого производителя придумать свою шину.

Шина VESA имеет 32 битный канал передачи данных и может работать на частоте 25 и 33 МГц. Она работала на той же тактовой частоте, что и центральный процессор. Но это стало проблемой, частота процессора увеличивается и должна была расти скорость видеокарт, а чем быстрее периферийные устройства, тем они дороже. Из-за этой проблемы шина VESA со временем была заменена на PCI.

Слоты VESA имели дополнительные наборы разъемов, а поэтому сами карты были крупными. Тем не менее сохранялась совместимость с ISA.

Шина PCI

Виды системных шин компьютера

В PCI можно использовать технологию Plug and Play (PnP). Все карты PCI поддерживают PnP. Это значит, что пользователь может подключить новую карту, включить компьютер и она будет автоматически распознана и настроена.

Также тут поддерживается управление шиной, есть некоторые возможности обработки данных, поэтому процессор тратит меньше времени на их обработку. Большинство PCI карт работают на напряжении 5 Вольт, но есть карты, которым нужно 3 Вольта.

Шина AGP

Виды системных шин компьютера

Необходимость передачи видео высокого качества с большой скоростью привела к разработке AGP. Accelerated Graphics Port (AGP) подключается к процессору и работает со скоростью шины процессора. Это значит, что видеосигналы будут намного быстрее передаваться на видеокарту для обработки.

PCI-Express

Виды системных шин компьютера

Это модифицированная версия стандарта PCI, которая вышла в 2002 году. Особенность этой шины в том что вместо параллельного подключения всех устройств к шине используется подключение точка-точка, между двумя устройствами. Таких подключений может быть до 16.

Это дает максимальную скорость передачи данных. Также новый стандарт поддерживает горячую замену устройств во время работы компьютера.

PC Card

Виды системных шин компьютера

Шина Personal Computer Memory Card Industry Association (PCICIA) была создана для стандартизации шин передачи данных в портативных компьютерах.

Шина SCSI

Виды системных шин компьютера

Шина SCSI была разработана М. Шугартом и стандартизирована в 1986 году. Эта шина используется для подключения различных устройств для хранения данных, таких как жесткие диски, DVD приводы и так далее, а также принтеры и сканеры. Целью этого стандарта было обеспечить единый интерфейс для управления всеми запоминающими устройствами на максимальной скорости.

Шина USB

Виды системных шин компьютера

Это стандарт внешней шины, который поддерживает скорость передачи данных до 12 Мбит/сек. Один порт USB (Universal Serial Bus) позволяет подключить до 127 периферийных устройств, таких как мыши, модемы, клавиатуры, и другие устройства USB. Также поддерживается горячее удаление и вставка оборудования. На данный момент существуют такие внешние шины компьютера USB, это USB 1.0, USB 2.0, USB 3.0, USB 3.1 и USB Type-C.

USB 1.0 был выпущен в 1996 году и поддерживал скорость передачи данных до 1,5 Мбит/сек. Стандарт USB 1.1 уже поддерживал скорость 12 Мбит/сек для таких устройств, как жесткие диски.

USB 3.0 появился в 2008 году и поднял стандарт скорости еще выше, теперь данные могут передаваться со скоростью 5 Гбит/сек. Также было увеличено количество устройств, которые можно питать от одного порта. USB 3.1 был выпущен в 2013 и тут уже поддерживалась скорость до 10 Гбит/с. Также для этой версии был разработан компактный разъем Type-C, к которому коннектор может подключаться любой стороной.

В этой статье мы рассмотрели основные шины компьютера, историю их развития, назначение шин компьютера, их типы и виды. Надеюсь эта статья была для вас полезной и вы узнали много нового.

Сейчас на сайте 1210 гостей и 1 пользователь

Источник

Видео

Шина компьютера, оперативная память, процессор и мосты

Шина компьютера, оперативная память, процессор и мосты

Системные шины персонального компьютера для ...

Системные шины персонального компьютера для ...

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

03. Основы устройства компьютера. Память и шина. [Универсальный программист]

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Как работает компьютер? Шины адреса, управления и данных. Дешифрация. Взгляд изнутри!

Системная шина процессора

Системная шина процессора

Системная шина персонального компьютера PCI

Системная шина персонального компьютера PCI

Системная шина персонального компьютера AGP

Системная шина персонального компьютера  AGP

Системная шина персонального компьютера ISA

Системная шина персонального компьютера ISA

Системная шина персонального компьютера pci express

Системная шина персонального компьютера pci express

Частота процессора, множитель и системная шина

Частота процессора, множитель и системная шина
Поделиться или сохранить к себе:
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных, принимаю Политику конфиденциальности и условия Пользовательского соглашения.