- Реверсивное включение двигателей постоянного тока
- Изменение направления вращения ротора асинхронного двигателя
- Схема подключения коллекторного двигателя с реверсом
- Схема реверса электродвигателя на ардуино
- Пуск, реверсирование и торможение двигателей постоянного тока
- Реверс твердотельными реле + схема коммутации электродвигателей
- Реверс электродвигателя + принцип организации рабочей схемы
- Реверс твердотельными реле + схемные решения для электродвигателя
- Реверс однофазными релейными приборами — примечания
- Реверс твердотельными реле + схема на трёхфазный электродвигатель
- Видео по теме: полная разборка магнитного пускателя для ремонта
- 🎬 Видео
Видео:Реверс двигателей постоянного токаСкачать
Реверсивное включение двигателей постоянного тока
Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.
Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.
Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.
Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.
На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.
КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.
Видео:Как сделать 《реверс》 для электродвигателяСкачать
Изменение направления вращения ротора асинхронного двигателя
Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.
Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».
При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.
После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.
Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.
Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.
Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.
В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.
Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.
При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.
Видео:Схема реверса смена полярности изменение направления двигателя постоянного тока с одной клавишейСкачать
Схема подключения коллекторного двигателя с реверсом
Чтобы осуществить реверс коллекторного двигателя, необходимо знать:
На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.
Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.
Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.
Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.
Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.
Зависит от типа двигателя:
Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.
Видео:Схема реверса двигателя постоянного тока.Скачать
Схема реверса электродвигателя на ардуино
В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.
Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.
В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.
В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.
В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.
Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!
Пуск, реверсирование и торможение двигателей постоянного тока
Пуск двигателя постоянного тока прямым включением его на напряжение сети допустим только для двигателей небольшой мощности. При этом пик тока в начале пуска может быть порядка 4 — 6-кратного номинального. Прямой пуск двигателей постоянного тока значительной мощности совершенно недопустим, потому что начальный пик тока здесь будет равен 15 — 50-кратному номинальному. Поэтому пуск двигателей средних и больших мощностей производят при помощи пускового реостата, который ограничивает ток при пуске до допустимых по коммутации и механической прочности значений.
Пусковой реостат выполняется из провода или ленты с высоким удельным сопротивлением, разделенных на секции. Провода присоединяются к медным кнопочным или плоским контактам в местах перехода от одной секции к другой. По контактам перемещается медная щетка поворотного рычага реостата. Реостаты могут иметь и другое выполнение. Ток возбуждения при пуске двигателя с параллельным возбуждением устанавливается соответствующим нормальной работе, цепь возбуждения включается прямо на напряжение сети, чтобы не было уменьшения напряжения, обусловленного падением напряжения в реостате (см. рис. 1).
Необходимость иметь нормальный ток возбуждения связана с тем, что при пуске двигатель должен развивать возможно больший допустимый момент Мэм, необходимый для обеспечения быстрого разгона. Пуск двигателя постоянного тока производится при последовательном уменьшении сопротивления реостата, обычно — путем перевода рычага реостата с одного неподвижного контакта реостата на другой и выключения секций; уменьшение сопротивления может производиться и путем замыкания накоротко секций контакторами, срабатывающими по заданной программе.
При пуске вручную или автоматически ток изменяется от максимального значения, равного 1,8 —2,5-кратному номинальному в начале работы при данном сопротивлении реостата, до минимального значения, равного 1,1 — 1,5-кратному номинальному в конце работы и перед переключением на другое положение пускового реостата. Ток якоря после включения двигателя при сопротивлении реостата rп составляет
где Uс — напряжение сети.
После включения начинается разгон двигателя, при этом возникает противо-ЭДС Е и уменьшается ток якоря. Если учесть, что механические характеристики n = f1(M н) и n = f2 (I я ) практически линейны, то при разгоне увеличение скорости вращения будет происходить по линейному закону в зависимости от тока якоря (рис. 1).
Рис. 1. Диаграмма пуска двигателя постоянного тока
Пусковая диаграмма (рис. 1) для различных сопротивлений в цепи якоря представляет собой отрезки линейных механических характеристик. При уменьшении тока якоря IЯ до значения Imin выключается секция реостата с сопротивлением r1 и ток возрастает до значения
где E1 — ЭДС в точке А характеристики; r1—сопротивление выключаемой секции.
Затем снова происходит разгон двигателя до точки В, и так далее вплоть до выхода на естественную характеристику, когда двигатель будет включен прямо на напряжение Uc. Пусковые реостаты рассчитаны по нагреву на 4 —6 пусков подряд, поэтому нужно следить, чтобы в конце пуска пусковой реостат был полностью выведен.
При остановке двигатель отключается от источника энергии, а пусковой реостат полностью включается — двигатель готов к следующему пуску. Для устранения возможности появления больших ЭДС самоиндукции при разрыве цепи возбуждения и при ее отключении цепь может замыкаться на разрядное сопротивление.
В регулируемых приводах пуск двигателей постоянного тока производится путем постепенного повышения напряжения источника питания так, чтобы ток при пуске поддерживался в требуемых пределах или сохранялся в течение большей части времени пуска примерно неизменным. Последнее можно осуществить путем автоматического управления процессом изменения напряжения источника питания в системах с обратными связями.
Пуск двигателей постоянного тока с последовательным возбуждением производится также при помощи пусковых устройств. Пусковая диаграмма представляет собой отрезки нелинейной механической характеристики для различных сопротивлений цепи якоря. Пуск при относительно небольших мощностях может выполняться вручную, а при больших — путем замыкания накоротко секций пускового реостата контакторами, которые срабатывают при управлении вручную или автоматически.
Реверсирование — изменение направления вращения двигателя — производится путем изменения направления действия вращающего момента. Для этого требуется изменить направление магнитного потока двигателя постоянного тока, т. е. переключить обмотку возбуждения или якорь, при этом в якоре будет протекать ток другого направления. При переключении и цепи возбуждения, и якоря направление вращения останется прежним.
Обмотка возбуждения двигателя параллельного возбуждения имеет значительный запас энергии: постоянная времени обмотки составляет секунды для двигателей больших мощностей. Значительно меньше постоянная времени обмотки якоря. Поэтому для того чтобы реверсирование проходило возможно быстрее, производится переключение якоря. Только там, где не требуется быстродействия, можно выполнять реверсирование путем переключения цепи возбуждения.
Реверсирование двигателей последовательного возбуждения можно производить переключением или обмотки возбуждения, или обмотки якоря, так как запасы энергии в обмотках возбуждения и якоря невелики и их постоянные времени относительно малы.
При реверсировании двигателя с параллельным возбуждением якорь сперва отключается от источника питания и двигатель механически тормозится или переключается для торможения. После окончания торможения якорь переключается, если он не был переключен в процессе торможения, и выполняется пуск при другом направлении вращения.
В такой же последовательности производится и реверсирование двигателя последовательного возбуждения: отключение — торможение — переключение — пуск в другом направлении. У двигателей со смешанным возбуждением при реверсировании следует переключить якорь либо последовательную обмотку вместе с параллельной.
Торможение необходимо для того, чтобы уменьшить время выбега двигателей, которое при отсутствии торможения может быть недопустимо велико, а также для фиксации приводимых механизмов в определенном положении. Механическое торможение двигателей постоянного тока обычно производится при наложении тормозных колодок на тормозной шкив. Недостатком механических тормозов является то, что тормозной момент и время торможения зависят от случайных факторов: попадания масла или влаги на тормозной шкив и других. Поэтому такое торможение применяется, когда не ограничены время и тормозной путь.
В ряде случаев после предварительного электрического торможения при малой скорости можно достаточно точно произвести остановку механизма (например, подъемника) в заданном положении и зафиксировать его положение в определенном месте. Такое торможение применяется и в аварийных случаях.
Электрическое торможение обеспечивает достаточно точное получение требуемого тормозящего момента, но не может обеспечить фиксацию механизма в заданном месте. Поэтому электрическое торможение при необходимости дополняется механическим, которое входит в действие после окончания электрического.
Электрическое торможение происходит, когда ток протекает согласно с ЭДС двигателя. Возможны три способа торможения.
Торможение двигателей постоянного тока с возвратом энергии в сеть. При этом ЭДС Е должна быть больше напряжения источника питания UС и ток будет протекать в направлении ЭДС, являясь током генераторного режима. Запасенная кинетическая энергия будет преобразовываться в электрическую и частично возвращаться в сеть. Схема включения показана на рис. 2, а.
Рис. 2. Схемы электрического торможения двигателей постоянного тока: я — с возвратом энергии в сеть; б — при противовключении; в — динамическое торможение
Торможение двигателя постоянного тока может быть выполнено, когда уменьшается напряжение источника питания так, что Uc
Торможение при противовключении выполняется путем переключения вращающегося двигателя на обратное направление вращения. При этом ЭДС Е и напряжение Uc в якоре складываются, и для ограничения тока I следует включать резистор с начальным сопротивлением
где Imах — наибольший допустимый ток.
Торможение связано с большими потерями энергии.
Динамическое торможение двигателей постоянного тока выполняется при включении на зажимы вращающегося возбужденного двигателя резистора rт (рис. 2, в). Запасенная кинетическая энергия преобразуется в электрическую и рассеивается в цепи якоря как тепловая. Это наиболее распространенный способ торможения.
Схемы включения двигателя постоянного тока параллельного (независимого) возбуждения: а — схема включения двигателя, б — схема включения при динамическом торможении, в — схема для противовключения.
Видео:Реверс своими рукамиСкачать
Реверс твердотельными реле + схема коммутации электродвигателей
Главная страница » Реверс твердотельными реле + схема коммутации электродвигателей
Некоторые виды моторной нагрузки требуют применения электрических схем, которыми обеспечивается реверс движения ротора электродвигателя. Для такой практики характерным является не просто многократный запуск и останов мотора, но также необходимо менять — реверсировать направление хода вала ротора. То есть актуальным становится управление электромотором в несколько усложнённом варианте. Современными схемами управления электродвигателями применяется реверс твердотельными реле, что видится удобным и практичным. Рассмотрим такие варианты.
Видео:Схема реверса электродвигателя постоянного тока с концевыми выключателямиСкачать
Реверс электродвигателя + принцип организации рабочей схемы
На картинке ниже показана классическая электрическая схема коммутации (в том числе реверс) трёхфазного электродвигателя через контактор. Здесь, если катушка любого из контакторов находится под напряжением, три фазы сети переменного тока поступают на обмотки статора двигателя через замкнутые линейные цепи контактора.
Так обеспечивается вращение ротора электромотора в одном направлении. Будучи в таком состоянии, ротор продолжает вращаться с постоянной скоростью и направлением до момента размыкания коммутационных линий контактора (съёма напряжения с катушки).
Традиционная схема коммутации электромотора (включая реверс): К1…К3 – кнопки управления (откл, вкл, реверс); АВ – автоматический выключатель сети; КН1…КН2 – контакторы; ТР – тепловое реле; ТРМ – терминал подключения мотора; Э1 — электромотор
Если перед повторным включением мотора поменять подключения любых двух фаз питающей линии переменного тока на контакторе (например, подключить фазу L1 на клемму № 2, фазу L2 на клемму № 1), ротор электродвигателя получит обратный (реверсный) вращательный момент.
Конечно, физически реверсировать электрические соединения на контакторе каждый раз, когда требуется получить реверс ротора электродвигателя, видится действием непрактичным и неудобным. Следовательно, логично автоматизировать процесс реверса с учётом команд контроллера управления системой, направленных на реверсирование.
Традиционно для этого использовались дискретные компоненты:
Однако механические решения имеют те же недостатки, что и любое электромеханическое устройство. Наиболее значительным из этих недостатков является ожидаемый срок службы, особенно для применений, где электродвигатель неоднократно включают — выключают для достижения определённого положения.
Реверс твердотельными реле + схемные решения для электродвигателя
Одно из возможных решений на реверсирование электродвигателя, устраняющее проблемы, связанные с механическими контактами, — это использование нескольких однофазных твердотельных реле. Как демонстрируется картинкой ниже, фазный провод L1 сети переменного тока подключен непосредственно на клемму статора двигателя.
Вариант схемного решения организации управления электродвигателем с возможностью функции реверса посредством группы однофазных твердотельных реле: П1…П5 — предохранители; ОТР1…ОТР4 — однофазные твердотельные реле; Э1 — асинхронный электродвигатель
Исходя из той же приведённой схемы, однофазные твердотельное реле ОТР1 и ОТР3 подключают фазы L2 или L3 на вторую клемму статора электродвигателя. Однофазное твердотельное реле ОТР2 и прибор ОТР4 подключают фазы L2 или L3 на третью клемму статора.
Когда приборы ОТР1 и ОТР2 находятся под напряжением, ротор электродвигателя вращается в одном направлении. Для получения реверса приборы ОТР1 и ОТР2 обесточиваются. Вместе с тем, приборы ОТР3 и ОТР4 активируются, эффективно меняя местами фазы L2 и L3 на контактных выводах обмоток статора.
Реверс однофазными релейными приборами — примечания
Важными являются примечания относительно использования нескольких ОТР в случаях реверсирования электродвигателя:
Другое (предпочтительное) эффективное решение на реверс асинхронного электродвигателя — трёхфазное твердотельное реле с функцией реверсирования, как часть общей схемы управления.
Реверс твердотельными реле + схема на трёхфазный электродвигатель
Трёхфазное коммутирующее устройство с реверсом двигателя отличается двумя существенными преимуществами по сравнению с методикой применения отдельных однофазных твердотельных реле:
Как видно на картинке ниже, две из трёх фаз подключены через прибор типа D53RV с функцией реверса двигателя, тогда как третья фаза подключена непосредственно к статору мотора. Когда логический сигнал подается на управляющую клемму «вправо», ТТР переключает фазы L1 и L2 непосредственно на обмотку статора.
Пример организации схемы — реверс твердотельными реле (типа D53RV) асинхронного электродвигателя: П1…П3 – линейные предохранители; МОВ1…4 – металлооксидные защитные варисторы; ТТР1 – твердотельное реле на три фазы типа D53RV (Crydom); Э1 – электромотор асинхронный
Когда же управляющий сигнал снимается с клеммы «вправо» и подаётся на клемму «влево», схемой ТТР переключается соединение фаз L1 и L2, что приводит к реверсу вала ротора электродвигателя. Если логический управляющий сигнал одновременно подаётся на клеммы «вправо» и «влево», ТТР отключится или останется выключенным.
Схема допускает добавление внешних металлооксидных варисторов для обеспечения дополнительной защиты в условиях перенапряжения, если таковые не включены внутрисхемно на реверсивном приборе ТТР.
Однако установка металлооксидных варисторов зависит и от особенностей схемы. Как демонстрируется на картинке выше, твердотельное реле с реверсом имеет четыре отдельные выходные цепи для обеспечения функции реверса хода ротора.
Соответственно, такое схемное построение требует включения четырёх металлооксидных варисторов (независимо, встроены варисторы внутрисхемно в реле с реверсом или нет). Кроме того, по аналогии с другими электрическими цепями, здесь требуются надлежащие предохранители, и соответствующее автоматическое отключение от сети переменного тока на случай аварии.
Видео по теме: полная разборка магнитного пускателя для ремонта
Ниже представлен тематический видеоролик, демонстрирующий как разобрать полностью магнитный пускатель — коммутационный прибор, который традиционно применяется для управления работой электромоторов:
🎬 Видео
РЕВЕРС МОТОРА без Н моста и транзисторов !!! НА одних ДИОДАХ !Скачать
Реверс мотора с помощью одного выключателя.Без Н-моста и релеСкачать
РЕВЕРС НА ДВУХ МИКРО КНОПКАХ !!! Без транзисторов мостов и Микросхем !Скачать
Доработка МЭ7Г теперь меняет вращение при смене полярности.Скачать
Самый простой реверс двигателя 12 вСкачать
Реверс двигателя - простейшая схемаСкачать
Реверс моторчика 12v через 2 релеСкачать
Реверсивная схема подключения магнитного пускателяСкачать
РЕГУЛЯТОР ОБОРОТОВ двигателя стиральной машины с Aliexpress. Подключение, реверс, схемаСкачать
Управление двигателем постоянного тока. Схема управления мотором Ардуино проекты.Скачать
РЕВЕРС Как заставить моторчик крутиться Туды Сюды без сложных схем?Скачать
Реверс мотора на одном реле.Как двумя кнопками изменять вращение мотораСкачать
Как сделать реверс асинхронного двигателя в однофазной сети 220 ВСкачать
Схема реверса моторчика 12вСкачать